Elaxia的路线
Elaxia的路线
求无向图中,两对点间最短路的最长公共路径。
四遍spfa标出每条边的标记,然后用拓扑排序跑dp即可。
exp:拓扑排序可以跑DAG上的dp。
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
const int maxn=1505;
struct Edge{
int fr, to, nxt, v, m1, m2;
}e[maxn*maxn*2];
int cnte=1, fir[maxn];
void addedge(int x, int y, int z){
Edge &ed=e[++cnte];
ed.fr=x; ed.to=y; ed.nxt=fir[x];
ed.v=z; fir[x]=cnte;
}
//spfa 边要开成4n!
int n, m, dis1[maxn], dis2[maxn], q[maxn*maxn], h, t;
void spfa(int src, int dst, int *dis){
memset(dis, 0x3f3f, maxn*4); dis[src]=h=t=0;
q[t++]=src; int u, v;
while (h<t){
u=q[h++];
for (int i=fir[u]; i; i=e[i].nxt){
v=e[i].to;
if (dis[u]+e[i].v<dis[v])
dis[v]=dis[u]+e[i].v, q[t++]=v;
}
}
}
int in[maxn], f[maxn];
int main(){
scanf("%d%d", &n, &m); int x, y, z;
int s1, t1, s2, t2;
scanf("%d%d%d%d", &s1, &t1, &s2, &t2);
for (int i=1; i<=m; ++i){
scanf("%d%d%d", &x, &y, &z);
addedge(x, y, z); addedge(y, x, z); }
spfa(s1, t1, dis1); spfa(t1, s1, dis2);
int minm=dis1[t1]; //最短路的长度
for (int i=2; i<=cnte; ++i){
if (dis1[e[i].fr]+dis2[e[i].to]+e[i].v==minm)
e[i].m1=1;
if (e[i].m1) ++in[e[i].to]; //若边在新图中
}
spfa(s2, t2, dis1); spfa(t2, s2, dis2);
minm=dis1[t2]; //最短路的长度
for (int i=2; i<=cnte; ++i)
if (dis1[e[i].fr]+dis2[e[i].to]+e[i].v==minm)
e[i].m2=e[i^1].m2=1; //两边都要标
h=t=0; int u, v;
for (int i=1; i<=n; ++i) if (!in[i]) q[t++]=i;
while (h<t){
u=q[h++];
for (int i=fir[u]; i; i=e[i].nxt){
if (!e[i].m1) continue; //必须在新图中
v=e[i].to; --in[v];
if (!in[v]) q[t++]=v;
f[v]=max(f[v], f[u]+(e[i].m2?e[i].v:0));
}
}
printf("%d\n", f[t1]);
return 0;
}
Elaxia的路线的更多相关文章
- BZOJ-1880 Elaxia的路线 SPFA+枚举
1880: [Sdoi2009]Elaxia的路线 Time Limit: 4 Sec Memory Limit: 64 MB Submit: 921 Solved: 354 [Submit][Sta ...
- BZOJ 1880: [Sdoi2009]Elaxia的路线( 最短路 + dp )
找出同时在他们最短路上的边(dijkstra + dfs), 组成新图, 新图DAG的最长路就是答案...因为两人走同一条路但是不同方向也可以, 所以要把一种一个的s,t换一下再更新一次答案 ---- ...
- 【BZOJ1880】[Sdoi2009]Elaxia的路线(最短路)
[BZOJ1880][Sdoi2009]Elaxia的路线(最短路) 题面 BZOJ 洛谷 题解 假装我们知道了任意两点间的最短路,那么我们怎么求解答案呢? 不难发现公共路径一定是一段连续的路径(如果 ...
- 洛谷 P2149 [SDOI2009]Elaxia的路线 解题报告
P2149 [SDOI2009]Elaxia的路线 题目描述 最近,Elaxia和w**的关系特别好,他们很想整天在一起,但是大学的学习太紧张了,他们 必须合理地安排两个人在一起的时间. Elaxia ...
- P2149 Elaxia的路线
P2149 Elaxia的路线 题意简述: 在一个n(n<=1500)个点的无向图里找两对点之间的最短路径的最长重合部分,即在保证最短路的情况下两条路径的最长重合长度(最短路不为一) 思路: 两 ...
- 【BZOJ 1880】 [Sdoi2009]Elaxia的路线 (最短路树)
1880: [Sdoi2009]Elaxia的路线 Description 最近,Elaxia和w**的关系特别好,他们很想整天在一起,但是大学的学习太紧张了,他们 必须合理地安排两个人在一起的时间. ...
- BZOJ1880: [Sdoi2009]Elaxia的路线(最短路)
1880: [Sdoi2009]Elaxia的路线 Time Limit: 4 Sec Memory Limit: 64 MBSubmit: 2049 Solved: 805 题目链接:https ...
- 【BZOJ1880】[SDOI2009]Elaxia的路线 (最短路+拓扑排序)
[SDOI2009]Elaxia的路线 题目描述 最近,\(Elaxia\)和\(w**\)的关系特别好,他们很想整天在一起,但是大学的学习太紧张了,他们 必须合理地安排两个人在一起的时间. \(El ...
- 【BZOJ1880】[Sdoi2009]Elaxia的路线 最短路+DP
[BZOJ1880][Sdoi2009]Elaxia的路线 Description 最近,Elaxia和w**的关系特别好,他们很想整天在一起,但是大学的学习太紧张了,他们 必须合理地安排两个人在一起 ...
随机推荐
- 西安电子科技大学第16届程序设计竞赛 F Operating System (unique() 去重函数)
链接:https://www.nowcoder.com/acm/contest/107/F来源:牛客网 Operating System 时间限制:C/C++ 1秒,其他语言2秒 空间限制:C/C++ ...
- Solaris与Windows Active Directory集成
通过Solaris与Active Directory的集成,Solaris可以使用Windows 2003 R2/ 2008 Active Directory来进行用户登录验证.以下是简要配置过程. ...
- javascript——对象的概念——函数 1 (函数对象的属性和方法)
一.创建函数 函数是一种对象:Function类 是对象,可以通过 Function 实例化一个函数,不过最多的还是利用 function 来创建函数. 方式一:利用 Function类 来实例化函数 ...
- apache http 跳到https
RewriteEngine OnRewriteCond %{HTTPS} !=onRewriteRule ^(.*) https://%{SERVER_NAME}/$1 [R,L]
- Linux系统下Oracle执行SQL脚本后中文出现乱码解决方法
先确认Oracle的字符集,sqlplus登录Oracle后执行语句: [sql] select userenv('language') from dual; 返回值例如:AMERICAN_AME ...
- python pdb 基础调试
当手边没有IDE,面对着python调试犯愁时,你就可以参考下本文:(pdb 命令调试) 参考:http://docs.python.org/library/pdb.html 和 (pdb)help ...
- python爬虫(1)--Urllib库的基本使用
这里使用python2.7,pycharm进行代码编写 1.爬一个静态网页示例 import urllib2 response = urllib2.urlopen("http://www.b ...
- 每天一道算法题(14)——N个降序数组,找到最大的K个数
题目: 假定有20个有序数组,每个数组有500个数字,降序排列,数字类型32位uint数值,现在需要取出这10000个数字中最大的500个. 思路 (1).建立大顶堆,维度为数组的个数,这里为20( ...
- __clone()方法
<?php class NbaPlayer{ public $name; } $james = new NbaPlayer(); $james->name = 'James'; echo ...
- jetty启动常用命令
1. 启动Jetty Server:运行命令:Java -jar start.jar 指定项目名称启动: java -jar start.jar -Dname=zoush 保持jetty后台 ...