使用MapReduce将Mysql数据导入HDFS代码链接

将HDFS数据导入Mysql,代码示例

package com.zhen.mysqlToHDFS;

import java.io.DataInput;
import java.io.DataOutput;
import java.io.IOException;
import java.sql.PreparedStatement;
import java.sql.ResultSet;
import java.sql.SQLException; import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.conf.Configured;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.io.Writable;
import org.apache.hadoop.mapred.lib.db.DBWritable;
import org.apache.hadoop.mapreduce.Counter;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.db.DBConfiguration;
import org.apache.hadoop.mapreduce.lib.db.DBOutputFormat;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.input.TextInputFormat;
import org.apache.hadoop.util.Tool;
import org.apache.hadoop.util.ToolRunner; /**
* @author FengZhen
* 将hdfs数据导入mysql
* 使用DBOutputFormat将HDFS路径下的结构化数据写入mysql中,结构化数据如下,第一列为key,后边三列为数据
* 0 1 Enzo 180.66
* 1 2 Din 170.666
*
*/
public class DBOutputFormatApp extends Configured implements Tool{ /**
* JavaBean
* 需要实现Hadoop序列化接口Writable以及与数据库交互时的序列化接口DBWritable
* 官方API中解释如下:
* public class DBInputFormat<T extends DBWritable>
* extends InputFormat<LongWritable, T> implements Configurable
* 即Mapper的Key是LongWritable类型,不可改变;Value是继承自DBWritable接口的自定义JavaBean
*/
public static class BeanWritable implements Writable, DBWritable { private int id;
private String name;
private double height; public void readFields(ResultSet resultSet) throws SQLException {
this.id = resultSet.getInt();
this.name = resultSet.getString();
this.height = resultSet.getDouble();
} public void write(PreparedStatement preparedStatement) throws SQLException {
preparedStatement.setInt(, id);
preparedStatement.setString(, name);
preparedStatement.setDouble(, height);
} public void readFields(DataInput dataInput) throws IOException {
this.id = dataInput.readInt();
this.name = dataInput.readUTF();
this.height = dataInput.readDouble();
} public void write(DataOutput dataOutput) throws IOException {
dataOutput.writeInt(id);
dataOutput.writeUTF(name);
dataOutput.writeDouble(height);
} public void set(int id,String name,double height){
this.id = id;
this.name = name;
this.height = height;
} @Override
public String toString() {
return id + "\t" + name + "\t" + height;
} } public static class DBOutputMapper extends Mapper<LongWritable, Text, NullWritable, BeanWritable>{
private NullWritable outputKey;
private BeanWritable outputValue; @Override
protected void setup(Mapper<LongWritable, Text, NullWritable, BeanWritable>.Context context)
throws IOException, InterruptedException {
this.outputKey = NullWritable.get();
this.outputValue = new BeanWritable();
}
@Override
protected void map(LongWritable key, Text value,
Mapper<LongWritable, Text, NullWritable, BeanWritable>.Context context)
throws IOException, InterruptedException {
//插入数据库成功的计数器
final Counter successCounter = context.getCounter("exec", "successfully");
//插入数据库失败的计数器
final Counter faildCounter = context.getCounter("exec", "faild");
//解析结构化数据
String[] fields = value.toString().split("\t");
//DBOutputFormatApp这个MapReduce应用导出的数据包含long类型的key,所以忽略key从1开始
if (fields.length > ) {
int id = Integer.parseInt(fields[]);
String name = fields[];
double height = Double.parseDouble(fields[]);
this.outputValue.set(id, name, height);
context.write(outputKey, outputValue);
//如果插入数据库成功则递增1,表示成功计数
successCounter.increment(1L);
}else{
//如果插入数据库失败则递增1,表示失败计数
faildCounter.increment(1L);
} }
} /**
* 输出的key必须是继承自DBWritable的类型,DBOutputFormat要求输出的key必须是DBWritable类型
* */
public static class DBOutputReducer extends Reducer<NullWritable, BeanWritable, BeanWritable, NullWritable>{
@Override
protected void reduce(NullWritable key, Iterable<BeanWritable> values,
Reducer<NullWritable, BeanWritable, BeanWritable, NullWritable>.Context context)
throws IOException, InterruptedException {
for (BeanWritable beanWritable : values) {
context.write(beanWritable, key);
}
}
} public int run(String[] arg0) throws Exception {
Configuration configuration = getConf();
//在创建Configuration的时候紧接着配置数据库连接信息
DBConfiguration.configureDB(configuration, "com.mysql.jdbc.Driver", "jdbc:mysql://localhost:3306/hadoop", "root", "123qwe");
Job job = Job.getInstance(configuration, DBOutputFormatApp.class.getSimpleName());
job.setJarByClass(DBOutputFormatApp.class);
job.setMapperClass(DBOutputMapper.class);
job.setMapOutputKeyClass(NullWritable.class);
job.setMapOutputValueClass(BeanWritable.class); job.setReducerClass(DBOutputReducer.class);
job.setOutputFormatClass(DBOutputFormat.class);
job.setOutputKeyClass(BeanWritable.class);
job.setOutputValueClass(NullWritable.class); job.setInputFormatClass(TextInputFormat.class);
FileInputFormat.setInputPaths(job, arg0[]);
//配置当前作业输出到数据库表、字段信息
DBOutputFormat.setOutput(job, "people", new String[]{"id","name","height"}); return job.waitForCompletion(true)?:;
} public static int createJob(String[] args){
Configuration conf = new Configuration();
conf.set("dfs.datanode.socket.write.timeout", "");
conf.set("mapreduce.input.fileinputformat.split.minsize", "");
conf.set("mapreduce.input.fileinputformat.split.maxsize", "");
int status = ;
try {
status = ToolRunner.run(conf,new DBOutputFormatApp(), args);
} catch (Exception e) {
e.printStackTrace();
}
return status;
} public static void main(String[] args) {
args = new String[]{"/user/hadoop/mapreduce/mysqlToHdfs/people"};
int status = createJob(args);
System.exit(status);
} }

打成jar包,放在服务器上,执行hadoop jar命令

hadoop jar /Users/FengZhen/Desktop/Hadoop/other/mapreduce_jar/HDFSToMysql.jar com.zhen.mysqlToHDFS.DBOutputFormatApp

任务结束后mysql表中即可发现数据已经有了。

使用MapReduce将HDFS数据导入Mysql的更多相关文章

  1. 通过sqoop将hdfs数据导入MySQL

    简介:Sqoop是一款开源的工具,主要用于在Hadoop(Hive)与传统的数据库(mysql.postgresql...)间进行数据的传递,可以将一个关系型数据库(例如 : MySQL ,Oracl ...

  2. 使用MapReduce将HDFS数据导入到HBase(二)

    package com.bank.service; import org.apache.hadoop.conf.Configuration;import org.apache.hadoop.conf. ...

  3. 使用MapReduce将HDFS数据导入到HBase(一)

    package com.bank.service; import java.io.IOException; import org.apache.hadoop.conf.Configuration;im ...

  4. 使用MapReduce将HDFS数据导入到HBase(三)

    使用MapReduce生成HFile文件,通过BulkLoader方式(跳过WAL验证)批量加载到HBase表中 package com.mengyao.bigdata.hbase; import j ...

  5. 将Excel数据导入mysql数据库的几种方法

    将Excel数据导入mysql数据库的几种方法 “我的面试感悟”有奖征文大赛结果揭晓! 前几天需要将Excel表格中的数据导入到mysql数据库中,在网上查了半天,研究了半天,总结出以下几种方法,下面 ...

  6. 使用MySQL Migration Toolkit快速将Oracle数据导入MySQL[转]

    使用MySQL Migration Toolkit快速将Oracle数据导入MySQL上来先说点废话本人最近在学习一些数据库方面的知识,之前接触过Oracle和MySQL,最近又很流行MongoDB非 ...

  7. SQLServer2005数据导入Mysql到详细教程

    如果转载请注明转载地址,谢谢. SQL SERVER数据导入MYSQL目录 1.Navicat for MySQL 版本10.0.9 2.创建目标数据库 3.创建正确的SQL SERVER数据库ODB ...

  8. Excel连接到MySQL,将Excel数据导入MySql,MySQL for Excel,,

    Excel连接到MySQL 即使当今时代我们拥有了类似微软水晶报表之类的强大报表工具和其他一些灵活的客户管 理应用工具,众多企业在分析诸如销售统计和收入信息的时候,微软的Excel依然是最常用的工具. ...

  9. 使用MySQL Migration Toolkit快速将Oracle数据导入MySQL

    MySQL GUI Tools中的MySQL Migration Toolkit可以非常方便快捷的将Oracle数据导到MySQL中,该软件可以在http://dev.mysql.com/downlo ...

随机推荐

  1. es6/es7 对象数组的合并拷贝

    方法一: let o1 = { a: 1, b: 2, c: 3 }; let o2 = {...o1, d: 4}; // o2 = { a: 1, b: 2, c: 3, d: 4 } let a ...

  2. bootstrap-ui-datetime-picker插件学习

    GitHub:https://github.com/Gillardo/bootstrap-ui-datetime-picker 准备 安装:bower install --save bootstrap ...

  3. java线程模型Master-Worker

    这样的模型是最经常使用的并行模式之中的一个,在Nginx源代码中有涉及到有想看的能够去这个大神的博客了解一下http://blog.csdn.net/marcky/article/details/60 ...

  4. MapReduce源码分析之JobSplitWriter

    JobSplitWriter被作业客户端用于写分片相关文件,包括分片数据文件job.split和分片元数据信息文件job.splitmetainfo.它有两个静态成员变量,如下: // 分片版本,当前 ...

  5. 国家制定人工智能(AI)发展战略的决策根据

    在今年两会上,李彦宏的提案有何道理?提案的依据是什么?这个问题必须说清楚,对社会公众有个交代. 回想过去,早在上世纪九十年代,用"电子网络"模拟人脑的想法已经出现.这样的" ...

  6. 【Atheros】Iperf性能测试的问题小结

    1. Iperf用文件作为数据源无效的问题 2. 在代码中修改iperf数据,iperf无法收到,但在mac层能拿到数据 3. TCP发不出去包的问题 1. Iperf用文件作为数据源无效的问题 Ip ...

  7. ios错误ignoring file xxx missing required architecture x86_64 in file

    错误ignoring file xxx missing required architecture x86_64 in file 解决方法: 1.在Project target里“Architectu ...

  8. web安全之SQL注入---第二章 什么是sql注入?

    如何理解SQL注入?SQL注入是一种将SQL代码添加到输入参数中传递到SQL服务器解析并执行的一种攻击方法总结:其实就是输入的参数没有进行过滤,直接参加sql语句的运算,达到不可预想的结果.SQL注入 ...

  9. Lumen开发:添加手机验证,中文验证与Validator验证的“半个”生命周期

    版权声明:本文为博主原创文章,未经博主允许不得转载. 添加手机验证方法可直接看这里:https://www.cnblogs.com/cxscode/p/9609828.html 今天来讲一下,Lume ...

  10. 大组合取模之:1<=n<=m<=1e6,1<=p<=1e9

    /****************************** 大组合取模之:1<=n<=m<=1e6,1<=p<=1e9 使用:程序最开始调用getprime(),需要 ...