机器学习中正则化项L1和L2的直观理解
正则化(Regularization)
概念
L0正则化的值是模型参数中非零参数的个数。
L1正则化表示各个参数绝对值之和。
L2正则化标识各个参数的平方的和的开方值。
L0正则化
稀疏的参数可以防止过拟合,因此用L0范数(非零参数的个数)来做正则化项是可以防止过拟合的。
从直观上看,利用非零参数的个数,可以很好的来选择特征,实现特征稀疏的效果,具体操作时选择参数非零的特征即可。但因为L0正则化很难求解,是个NP难问题,就是难以优化,因此一般采用L1正则化。L1正则化是L0正则化的最优凸近似,比L0容易求解,并且也可以实现稀疏的效果。
L1、L2正则化
机器学习中几乎都可以看到损失函数后面会添加一个额外项,常用的额外项一般有两种,一般英文称作ℓ1-norm和ℓ2-norm,中文称作L1正则化和L2正则化,或者L1范数和L2范数。
L1正则化和L2正则化可以看做是损失函数的惩罚项。所谓『惩罚』是指对损失函数中的某些参数做一些限制。对于线性回归模型,使用L1正则化的模型建叫做Lasso回归,使用L2正则化的模型叫做Ridge回归(岭回归)。下图是Python中Lasso回归的损失函数,式中加号后面一项α||w||1即为L1正则化项。
下图是Python中Ridge回归的损失函数,式中加号后面一项即为L2正则化项。
一般回归分析中回归w表示特征的系数,从上式可以看到正则化项是对系数做了处理(限制)。L1正则化和L2正则化的说明如下:
- L1正则化是指权值向量w中各个元素的绝对值之和,通常表示为||w||1
- L2正则化是指权值向量w中各个元素的平方和然后再求平方根(可以看到Ridge回归的L2正则化项有平方符号),通常表示为||w||2
一般都会在正则化项之前添加一个系数,Python中用α表示,一些文章也用λ表示。这个系数需要用户指定。
那添加L1和L2正则化有什么用?下面是L1正则化和L2正则化的作用,这些表述可以在很多文章中找到。
- L1正则化可以产生稀疏权值矩阵,即产生一个稀疏模型,可以用于特征选择
- L2正则化可以防止模型过拟合(overfitting);一定程度上,L1也可以防止过拟合
稀疏模型与特征选择
上面提到L1正则化有助于生成一个稀疏权值矩阵,进而可以用于特征选择。
1. 为什么要生成一个稀疏矩阵?(实现参数的稀疏有什么好处吗?)
一个好处是可以简化模型,避免过拟合。因为一个模型中真正重要的参数可能并不多,如果考虑所有的参数起作用,那么可以对训练数据可以预测的很好,但是对测试数据就只能呵呵了。另一个好处是参数变少可以使整个模型获得更好的可解释性。这就是稀疏模型与特征选择的关系。
2.参数值越小代表模型越简单吗?
是的。为什么参数越小,说明模型越简单呢,这是因为越复杂的模型,越是会尝试对所有的样本进行拟合,甚至包括一些异常样本点,这就容易造成在较小的区间里预测值产生较大的波动,这种较大的波动也反映了在这个区间里的导数很大,而只有较大的参数值才能产生较大的导数。因此复杂的模型,其参数值会比较大。
L1和L2正则化的直观理解
这部分内容将解释为什么L1正则化可以产生稀疏模型(L1是怎么让系数等于零的),以及为什么L2正则化可以防止过拟合。
L1正则化和特征选择
假设有如下带L1正则化的损失函数:
其中J0是原始的损失函数,加号后面的一项是L1正则化项,α是正则化系数。注意到L1正则化是权值的绝对值之和,J是带有绝对值符号的函数,因此J是不完全可微的。机器学习的任务就是要通过一些方法(比如梯度下降)求出损失函数的最小值。当我们在原始损失函数J0后添加L1正则化项时,相当于对J0做了一个约束。令L=α∑w|w|,则J=J0+L,此时我们的任务变成在L约束下求出J0取最小值的解。考虑二维的情况,即只有两个权值w1和w2,此时L=|w1|+|w2|对于梯度下降法,求解J0的过程可以画出等值线,同时L1正则化的函数L也可以在w1w2的二维平面上画出来。如下图:
图1 L1正则化
图中等值线是J0的等值线,黑色方形是L函数的图形。在图中,当J0等值线与L图形首次相交的地方就是最优解。上图中J0与L在L的一个顶点处相交,这个顶点就是最优解。注意到这个顶点的值是(w1,w2)=(0,w)。可以直观想象,因为L函数有很多『突出的角』(二维情况下四个,多维情况下更多),J0与这些角接触的机率会远大于与L其它部位接触的机率,而在这些角上,会有很多权值等于0,这就是为什么L1正则化可以产生稀疏模型,进而可以用于特征选择。
而正则化前面的系数α,可以控制L图形的大小。α越小,L的图形越大(上图中的黑色方框);α越大,L的图形就越小,可以小到黑色方框只超出原点范围一点点,这是最优点的值(w1,w2)=(0,w)中的w可以取到很小的值。
类似,假设有如下带L2正则化的损失函数:
同样可以画出他们在二维平面上的图形,如下:
图2 L2正则化
二维平面下L2正则化的函数图形是个圆,与方形相比,被磨去了棱角。因此J0与L相交时使得w1或w2等于零的机率小了许多,这就是为什么L2正则化不具有稀疏性的原因。
L2正则化和过拟合
避免过拟合的方式之一是使用交叉验证(cross validation),这有利于估计测试集中的错误,同时有利于确定对模型最有效的参数。本文将重点介绍一种方法,它有助于避免过拟合并提高模型的可解释性。
拟合过程中通常都倾向于让权值尽可能小,最后构造一个所有参数都比较小的模型。因为一般认为参数值小的模型比较简单,能适应不同的数据集,也在一定程度上避免了过拟合现象。可以设想一下对于一个线性回归方程,若参数很大,那么只要数据偏移一点点,就会对结果造成很大的影响;但如果参数足够小,数据偏移得多一点也不会对结果造成什么影响,专业一点的说法是『抗扰动能力强』。
正则化
正则化是一种回归的形式,它将系数估计(coefficient estimate)朝零的方向进行约束、调整或缩小。也就是说,正则化可以在学习过程中降低模型复杂度和不稳定程度,从而避免过拟合的危险。
那为什么L2正则化可以获得值很小的参数?
以线性回归中的梯度下降法为例。假设要求的参数为 是我们的假设函数,那么线性回归的代价函数如下:
那么在梯度下降法中,最终用于迭代计算参数θ的迭代式为:
其中α是learning rate. 上式是没有添加L2正则化项的迭代公式,如果在原始代价函数之后添加L2正则化,则迭代公式会变成下面的样子:
其中λ就是正则化参数。从上式可以看到,与未添加L2正则化的迭代公式相比,每一次迭代,θj都要先乘以一个小于1的因子,从而使得θj不断减小,因此总得来看,θ是不断减小的。
最开始也提到L1正则化一定程度上也可以防止过拟合。之前做了解释,当L1的正则化系数很小时,得到的最优解会很小,可以达到和L2正则化类似的效果。
正则化参数的选择
L1正则化参数
通常越大的λ可以让代价函数在参数为0时取到最小值。下面是一个简单的例子,这个例子来自Quora上的问答。为了方便叙述,一些符号跟这篇帖子的符号保持一致。
假设有如下带L1正则化项的代价函数:
其中x是要估计的参数,相当于上文中提到的w以及θ. 注意到L1正则化在某些位置是不可导的,当λ足够大时可以使得F(x)在x=0时取到最小值。如下图:
图3 L1正则化参数的选择
分别取λ=0.5和λ=2,可以看到越大的λλ越容易使F(x)在x=0时取到最小值。
L2正则化参数
从公式5可以看到,λ越大,θj衰减得越快。另一个理解可以参考图2,λ越大,L2圆的半径越小,最后求得代价函数最值时各参数也会变得很小。
学习源于:https://blog.csdn.net/jinping_shi/article/details/52433975
机器学习中正则化项L1和L2的直观理解的更多相关文章
- 神经网络损失函数中的正则化项L1和L2
神经网络中损失函数后一般会加一个额外的正则项L1或L2,也成为L1范数和L2范数.正则项可以看做是损失函数的惩罚项,用来对损失函数中的系数做一些限制. 正则化描述: L1正则化是指权值向量w中各个元素 ...
- 正则化项L1和L2
本文从以下六个方面,详细阐述正则化L1和L2: 一. 正则化概述 二. 稀疏模型与特征选择 三. 正则化直观理解 四. 正则化参数选择 五. L1和L2正则化区别 六. 正则化问题讨论 一. 正则化概 ...
- 正则化项L1和L2的区别
https://blog.csdn.net/jinping_shi/article/details/52433975 https://blog.csdn.net/zouxy09/article/det ...
- 损失函数———有关L1和L2正则项的理解
一.损失函: 模型的结构风险函数包括了 经验风险项 和 正则项,如下所示: 二.损失函数中的正则项 1.正则化的概念: 机器学习中都会看到损失函数之后会添加一个额外项,常用的额外项一般有2种, ...
- 机器学习中规范化项:L1和L2
规范化(Regularization) 机器学习中几乎都可以看到损失函数后面会添加一个额外项,常用的额外项一般有两种,一般英文称作ℓ1-norm和ℓ2-norm,中文称作L1正则化和L2正则化,或者L ...
- 机器学习之正则化【L1 & L2】
前言 L1.L2在机器学习方向有两种含义:一是L1范数.L2范数的损失函数,二是L1.L2正则化 L1范数.L2范数损失函数 L1范数损失函数: L2范数损失函数: L1.L2分别对应损失函数中的绝对 ...
- 深度学习(五)正则化之L1和L2
监督机器学习问题无非就是“minimizeyour error while regularizing your parameters”,也就是在规则化参数的同时最小化误差.最小化误差是为了让我们的模型 ...
- 正则化,L1,L2
机器学习中在为了减小loss时可能会带来模型容量增加,即参数增加的情况,这会导致模型在训练集上表现良好,在测试集上效果不好,也就是出现了过拟合现象.为了减小这种现象带来的影响,采用正则化.正则化,在减 ...
- 『科学计算』L0、L1与L2范数_理解
『教程』L0.L1与L2范数 一.L0范数.L1范数.参数稀疏 L0范数是指向量中非0的元素的个数.如果我们用L0范数来规则化一个参数矩阵W的话,就是希望W的大部分元素都是0,换句话说,让参数W是稀 ...
随机推荐
- matplotlib.pyplot import报错: ValueError: _getfullpathname: embedded null character in path
Environment: Windows 10, Anaconda 3.6 matplotlib 2.0 import matplotlib.pyplot 报错: ValueError: _getfu ...
- 2017-10-19 NOIP模拟赛
Count(哈格朗日插值) 题解: 有个定理,另sum(x)表示小于等于x的数中与x互质的数的和 sum(x)=φ(x)*x/2 最后可知f(x)=x (f(1)=2) 当然打表能知道. 然 ...
- 洛谷P1092 虫食算
P1092 虫食算 题目描述 所谓虫食算,就是原先的算式中有一部分被虫子啃掉了,需要我们根据剩下的数字来判定被啃掉的字母.来看一个简单的例子: http://paste.ubuntu.com/2544 ...
- python数据类型基本操作
目录 1.字符串.... 1 2.列表[ ] 3 3.元组 ( ) 4 4.字典 { } 4 5.SET集合... 7 1.字符串 1.1查找字符串 find查找 >>> msg = ...
- Codeforces Round #501 (Div. 3) 1015A Points in Segments (前缀和)
A. Points in Segments time limit per test 1 second memory limit per test 256 megabytes input standar ...
- 洛谷 P3128 [USACO15DEC]最大流Max Flow
题目描述 \(FJ\)给他的牛棚的\(N(2≤N≤50,000)\)个隔间之间安装了\(N-1\)根管道,隔间编号从\(1\)到\(N\).所有隔间都被管道连通了. \(FJ\)有\(K(1≤K≤10 ...
- Exadata X2-2 更换 存储节点Flash卡电池(ESM)
Exadata X2-2中的F20 Flash卡含有电源存储模块ESM(Energy Storage Module ), 也就是我们常说的电池,当主机异常断电时,ESM给Flash模块提供备用电源.实 ...
- Jmeter常用线程组设置及场景运行时间计算
Jmeter中通过线程组来模拟大用户并发场景,今天主要介绍三个常用的线程组,帮助我们设计更加完善的测试场景,另外介绍下场景执行时间如何计算. 一.Thread Group 取样器错误后要执行的动作 ...
- ubuntu 的 python从2.* 升级到3.*
1.在ubuntu 的终端中用代码下载最新的Python sudo apt-get install python3 2.用命令删除usr/bin/目录下的默认python link文件root@sal ...
- servlet获取并存储web.xml中context-param参数
在web.xml中定义了context-param,一般不会随意改动,所以在监听器中做一次处理,容器启动时读取并存储在Properties中,方便以后取值. SysProperties 类用于存储 c ...