求在小于等于N的正整数中有多少个X满足:X mod a[0] = b[0], X mod a[1] = b[1], X mod a[2] = b[2], …, X mod a[i] = b[i], … (0 < a[i] <= 10)。

Input输入数据的第一行为一个正整数T,表示有T组测试数据。每组测试数据的第一行为两个正整数N,M (0 < N <= 1000,000,000 , 0 < M <= 10),表示X小于等于N,数组a和b中各有M个元素。接下来两行,每行各有M个正整数,分别为a和b中的元素。Output对应每一组输入,在独立一行中输出一个正整数,表示满足条件的X的个数。

Sample Input

3
10 3
1 2 3
0 1 2
100 7
3 4 5 6 7 8 9
1 2 3 4 5 6 7
10000 10
1 2 3 4 5 6 7 8 9 10
0 1 2 3 4 5 6 7 8 9 Sample Output
1
0
3 在我看来算是中国剩余定理的一个变形题目,或者说是lcm的一个变形题目。
每个符合答案的数字在0-N之间,并且间距为lcm。设lcm+x为符合所有a[i]的解,则lcm+lcm+x也同样符合条件。
证:
(lcm+x)%a[i]=b[i]
lcm%a[i]=0
(lcm+lcm+x)%a[i]=lcm%a[i]+(lcm+x)%a[i]=b[i]
设t=N%lcm
本题就可以求0-t之间是否有解和 t - lcm+t之间是否有解来解决
#include <iostream>
#include<cstdio>
using namespace std;
#define ll long long
int a[15];
int b[15];
int gcd(int a,int b)
{
return b==0?a:gcd(b,a%b);
}
int main()
{
int t;
scanf("%d",&t);
while(t--)
{
int n,m;
int lcm=1;
cin>>n>>m;
for(int i=0;i<m;i++)
{
cin>>a[i];
lcm=a[i]/gcd(lcm,a[i])*lcm;
}
for(int i=0;i<m;i++)
{
cin>>b[i];
}
int r=n%lcm;
int cnt1=0;
for(int i=1;i<=r&&!cnt1;i++)
{
for(int j=0;j<m;j++)
{
if(i%a[j]!=b[j])
break;
if(j==m-1)
{
cnt1++;
}
}
}
int cnt2=0;
for(int i=r+1;i<=r+lcm&&!cnt2;i++)
{
for(int j=0;j<m;j++)
{
if(i%a[j]!=b[j])
break;
if(j==m-1)
cnt2+=n/lcm;
}
}
cout<<cnt1+cnt2<<endl;
}
}

  

												

hdu_1573_X问题 (分段之中国剩余的更多相关文章

  1. 《孙子算经》之"物不知数"题:中国剩余定理

    1.<孙子算经>之"物不知数"题 今有物不知其数,三三数之剩二,五五数之剩七,七七数之剩二,问物几何? 2.中国剩余定理 定义: 设 a,b,m 都是整数.  如果 m ...

  2. hdu 5446 Unknown Treasure 卢卡斯+中国剩余定理

    Unknown Treasure Time Limit: 1500/1000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Other ...

  3. POJ 1006 中国剩余定理

    #include <cstdio> int main() { // freopen("in.txt","r",stdin); ; while(sca ...

  4. [TCO 2012 Round 3A Level3] CowsMooing (数论,中国剩余定理,同余方程)

    题目:http://community.topcoder.com/stat?c=problem_statement&pm=12083 这道题还是挺耐想的(至少对我来说是这样).开始时我只会60 ...

  5. poj1006中国剩余定理

    Biorhythms Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 103506   Accepted: 31995 Des ...

  6. (伪)再扩展中国剩余定理(洛谷P4774 [NOI2018]屠龙勇士)(中国剩余定理,扩展欧几里德,multiset)

    前言 我们熟知的中国剩余定理,在使用条件上其实是很苛刻的,要求模线性方程组\(x\equiv c(\mod m)\)的模数两两互质. 于是就有了扩展中国剩余定理,其实现方法大概是通过扩展欧几里德把两个 ...

  7. 洛谷P2480 [SDOI2010]古代猪文(费马小定理,卢卡斯定理,中国剩余定理,线性筛)

    洛谷题目传送门 蒟蒻惊叹于一道小小的数论题竟能涉及这么多知识点!不过,掌握了这些知识点,拿下这道题也并非难事. 题意一行就能写下来: 给定\(N,G\),求\(G^{\sum \limits _{d| ...

  8. 洛谷P3868 [TJOI2009]猜数字(中国剩余定理,扩展欧几里德)

    洛谷题目传送门 90分WA第二个点的看过来! 简要介绍一下中国剩余定理 中国剩余定理,就是用来求解这样的问题: 假定以下出现数都是自然数,对于一个线性同余方程组(其中\(\forall i,j\in[ ...

  9. [SDOI2010]古代猪文 (欧拉,卢卡斯,中国剩余)

    [SDOI2010]古代猪文 \(solution:\) 这道题感觉综合性极强,用到了许多数论中的知识: 质因子,约数,组合数 欧拉定理 卢卡斯定理 中国剩余定理 首先我们读题,发现题目需要我们枚举k ...

随机推荐

  1. hibernate课程 初探一对多映射2-4 Mysql创建数据库表

    1 本节内容: mysql 数据库建表(班级表和学生表) Create table grade(gid varchar(32) primary key, gname varchar(32) not n ...

  2. C++中的虚函数表

    (感谢http://blog.csdn.net/haoel/article/details/1948051/) C++中的虚函数的作用主要是实现了多态的机制. 多态,简而言之就是用父类型别的指针指向其 ...

  3. svg用作背景图

    svg用做背景图的几种方式 1. 直接使用 background: url('data:image/svg+xml;charset=utf-8,<svg width="10" ...

  4. MongoDB之mongodb.cnf配置

    # mongodb3.2.1 的主配置文件,将此文件放置于 mongodb3.2.1/bin 目录下 # hapday 2016-01-27-16:55 start # 数据文件存放目录 dbpath ...

  5. CSS3制作3D旋转视频展示区

    <!doctype html> <html lang="en"> <head> <meta charset="UTF-8&quo ...

  6. 解决Pandoc wasn't found.pdflatex not found on PATH

    解决nbconvert failed: Pandoc wasn't found.解决nbconvert failed: pdflatex not found on PATH 问题1描述 500 : I ...

  7. Angular JS + Express JS入门搭建网站

    3月份开始,接到了新的任务,跟UI开发有关,用的是Angular JS,Express JS等技术.于是周末顺便学习下新技术. 组里产品UI架构如下: 其中前端,主要使用Angular JS框架,另外 ...

  8. 【从业余项目中学习1】C# 实现XML存储用户名密码(MD5加密)

    最近在写一个C#的项目,用户需求是实现Winform的多文档界面与Matlab算法程序之间的交互.做了一段时间发现,这既能利用业余时间,实战中也可学习一些技术,同时刚毕业也增加一份收入.所以后面会不断 ...

  9. Quick How-To deny/allow IP using iptables

    How to block an IP using iptables? iptables -A INPUT -s xx.xx.xx.xx -j DROP How to block an IP for a ...

  10. python3线程介绍02(线程锁的介绍:互斥、信号、条件、时间、定时器)

    #!/usr/bin/env python# -*- coding:utf-8 -*- import threadingimport timeimport random # 1-互斥锁 Lock 同一 ...