[pixiv] https://www.pixiv.net/member_illust.php?mode=medium&illust_id=34310873

Description

Given an N*N matrix A, whose elements are either 0 or 1. A[i, j] means the number in the i-th row and j-th column. Initially we have A[i, j] = 0 (1 <= i, j <= N).

We can change the matrix in the following way. Given a rectangle whose upper-left corner is (x1, y1) and lower-right corner is (x2, y2), we change all the elements in the rectangle by using “not” operation (if it is a ‘0’ then change it into ‘1’ otherwise change it into ‘0’). To maintain the information of the matrix, you are asked to write a program to receive and execute two kinds of instructions.

1. C x1 y1 x2 y2 (1 <= x1 <= x2 <= n, 1 <= y1 <= y2 <= n) changes the matrix by using the rectangle whose upper-left corner is (x1, y1) and lower-right corner is (x2, y2).

2. Q x y (1 <= x, y <= n) querys A[x, y].

Input

The first line of the input is an integer X (X <= 10) representing the number of test cases. The following X blocks each represents a test case.

The first line of each block contains two numbers N and T (2 <= N <= 1000, 1 <= T <= 50000) representing the size of the matrix and the number of the instructions. The following T lines each represents an instruction having the format “Q x y” or “C x1 y1 x2 y2”, which has been described above.

Output

For each querying output one line, which has an integer representing A[x, y].

There is a blank line between every two continuous test cases.

Sample Input

1

2 10

C 2 1 2 2

Q 2 2

C 2 1 2 1

Q 1 1

C 1 1 2 1

C 1 2 1 2

C 1 1 2 2

Q 1 1

C 1 1 2 1

Q 2 1

Sample Output

1

0

0

1

题目大意

给一个N*N的矩阵,里面的值不是0,就是1。初始时每一个格子的值为0。

现对该矩阵有两种操作:(共T次)

1.C x1 y1 x2 y2:将左上角为(x1, y1),右下角为(x2, y2)这个范围的子矩阵里的值全部取反。

2.Q x y:查询矩阵中第i行,第j列的值。

根据数据范围,横纵两个方向都必须是log级的复杂度。如果按照题目原意直接模拟,区间修改单点查询,需要用线段树。但是我并不会二位线段树。那么就利用差分的思想,使其转化为单点修改区间查询,可以用树状数组来维护。

一维的差分是这样的

[le,ri]+val



那么二维的就是



但是详细的,(x,y)+1,是指的从(x,y)到(n,n)的矩阵都+1

那么根据容斥原理



由此一来,单点查询时就查询(0,0)到(x,y)的和

现在就是二维树状数组怎么实现的问题了

其实很简单,就是两个for套在一起就是了

void modify(int x,int y,int val){
for(int i=x;i<=n;i+=(i&(-i)))
for(int j=y;j<=n;j+=(j&(-j)))
c[i][j]++;
}

完整代码

#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std; const int N=1000+5;
const int T=50000+5; int n,t;
int c[N][N]; void modify(int x,int y,int val){
for(int i=x;i<=n;i+=(i&(-i)))
for(int j=y;j<=n;j+=(j&(-j)))
c[i][j]++;
}
int query(int x,int y){
int rt=0;
for(int i=x;i>0;i-=(i&(-i)))
for(int j=y;j>0;j-=(j&(-j)))
rt+=c[i][j];
return rt;
}
void solve(){
scanf("%d%d",&n,&t);
memset(c,0,sizeof(c));
while(t--){
char opt[2];
scanf("%s",opt);
if(opt[0]=='C'){
int x1,y1,x2,y2;
scanf("%d%d%d%d",&x1,&y1,&x2,&y2);
modify(x1,y1,1);
modify(x1,y2+1,-1);
modify(x2+1,y1,-1);
modify(x2+1,y2+1,1);
}
else{
int x,y;
scanf("%d%d",&x,&y);
printf("%d\n",query(x,y)%2);
}
}
printf("\n");
}
int main(){
int x;
scanf("%d",&x);
while(x--) solve();
return 0;
}

总结:

1、看到操作不必直接模拟,用差分等思想可以化难为简

【poj2155】【Matrix】二位树状数组的更多相关文章

  1. [poj2155]Matrix(二维树状数组)

    Matrix Time Limit: 3000MS   Memory Limit: 65536K Total Submissions: 25004   Accepted: 9261 Descripti ...

  2. poj----2155 Matrix(二维树状数组第二类)

    Matrix Time Limit: 3000MS   Memory Limit: 65536K Total Submissions: 16950   Accepted: 6369 Descripti ...

  3. POJ2155:Matrix(二维树状数组,经典)

    Description Given an N*N matrix A, whose elements are either 0 or 1. A[i, j] means the number in the ...

  4. 【poj2155】Matrix(二维树状数组区间更新+单点查询)

    Description Given an N*N matrix A, whose elements are either 0 or 1. A[i, j] means the number in the ...

  5. poj2155一个二维树状数组

                                                                                                         ...

  6. POJ 2155 Matrix(二维树状数组,绝对具体)

    Matrix Time Limit: 3000MS   Memory Limit: 65536K Total Submissions: 20599   Accepted: 7673 Descripti ...

  7. POJ 2155:Matrix 二维树状数组

    Matrix Time Limit: 3000MS   Memory Limit: 65536K Total Submissions: 21757   Accepted: 8141 Descripti ...

  8. HDU4456-Crowd(坐标旋转+二位树状数组+离散化)

    转自:http://blog.csdn.net/sdj222555/article/details/10828607 大意就是给出一个矩阵 初始每个位置上的值都为0 然后有两种操作 一种是更改某个位置 ...

  9. poj 2155 Matrix (二维树状数组)

    题意:给你一个矩阵开始全是0,然后给你两种指令,第一种:C x1,y1,x2,y2 就是将左上角为x1,y1,右下角为x2,y2,的这个矩阵内的数字全部翻转,0变1,1变0 第二种:Q x1 y1,输 ...

随机推荐

  1. Pytest框架介绍

    Pytest框架介绍.安装 pytest是python测试框架,与python自带的unittest测试框架类似,但是比unittest框架使用起来更简洁,功能更强大 pytest特征 1:断言提示信 ...

  2. StaticBox布局管理器

    wx.StaticBoxSizer构造方法如下: wx.StaticBoxSizer(box,orient = HORIZONTAL) box 是静态框对象,orient参数是布局方向  wx.HOR ...

  3. OZ常见错误解决办法

    执行成功 错误信息解决办法 libvirt.libvirtError: Failed to connect socket to '/var/run/libvirt/libvirt-sock': No ...

  4. 1086 Tree Traversals Again (25 分)(二叉树的遍历)

    用栈来模拟一棵二叉树的先序遍历和中序遍历过程,求这棵二叉树的后序遍历 由题棵知道:push是先序遍历 pop是中序遍历 #include<bits/stdc++.h> using name ...

  5. 替换Fragment 报错 The specified child already has a parent. You must call removeView() on the child's parent first.

    在将一个fragment替换到一个frameLayout的时候报错: code: transaction.replace(R.id.fragment_container, fragment2); 错误 ...

  6. shell之dialog提示窗口

    dialog 提示窗口 1.msgbox     dialog --msgbox text 20 10 2.yesno     dialog --title "Please answer&q ...

  7. CSS3的笔记总结

    css3  就是css2 的一个升级版本.css2 是用来做效果渲染的,而css3 可以使做出来的效果更佳丰富. C3有兼容性问题,移动端支持稍微要好些.       坚持以下原则:         ...

  8. URAL 1942 Attack at the Orbit

    B - Attack at the Orbit Time Limit:1000MS     Memory Limit:65536KB     64bit IO Format:%I64d & % ...

  9. Icarus Verilog和GTKwave使用简析

    Icarus Verilog和GTKwave使用简析 来源 http://blog.csdn.net/husipeng86/article/details/60469543 本文测试文件在window ...

  10. BZOJ2631 tree 【LCT】

    题目 一棵n个点的树,每个点的初始权值为1.对于这棵树有q个操作,每个操作为以下四种操作之一: + u v c:将u到v的路径上的点的权值都加上自然数c: - u1 v1 u2 v2:将树中原有的边( ...