【bzoj1566】【管道取珠】竟然是dp题(浅尝ACM-E)
[pixiv] https://www.pixiv.net/member_illust.php?mode=medium&illust_id=61891436
向大(hei)佬(e)势力学(di)习(tou)
Description
![]()
![]()
Input第一行包含两个整数n, m,分别表示上下两个管道中球的数目。 第二行为一个AB字符串,长度为n,表示上管道中从左到右球的类型。其中A表示浅色球,B表示深色球。 第三行为一个AB字符串,长度为m,表示下管道中的情形。
Output仅包含一行,即为 Sigma(Ai^2) i从1到k 除以1024523的余数。
Sample Input2 1
AB
B
Sample Output
5
HINT
样例即为文中(图3)。共有两种不同的输出序列形式,序列BAB有1种产生方式,而序列BBA有2种产生方式,因此答案为5。
【大致数据规模】
约30%的数据满足 n, m ≤ 12;
约100%的数据满足n, m ≤ 500。
一眼就被sigma吓傻了,以为是一道数论题,分析来分析去,好不容易把题目中的等式理解了,却对着ai^2不知所措
(以下是大佬把我讲懂的)
仔细分析,ai表示第i种输出序列的方案数,那么ai^2就是ai*ai,感觉像不像两个人玩这个游戏得到相同输出的方案数?由此一来就有些思路可循了
我们设dp[i][j][k][l]表示第一个人从上排取i个,下排取j个,第二个人上排取k个,下排取l个。转移方程即为(a[]为上排b[]为下排):
1、a[i]==a[k] , dp[i][j][k][l]+=dp[i-1][j][k-1][l];
2、a[i]==b[l] , dp[i][j][k][l]+=dp[i-1][j][k][l-1];
3、b[j]==a[k], dp[i][j][k][l]+=dp[i][j-1][k-1][l];
4、b[j]==b[l], dp[i][j][k][l]+=dp[i][j-1][k][l-1];
但是这个四维的方程要TLE啊,怎么办呢?我们想想能不能减少一维的枚举,于是可以发现:因为要保证第一个人和第二个人的输出序列一样,那么取的球的数量一定一样,即可改一下dp数组的定义,dp[i][j][k],l可用i+j-k来表示。
然后我就wa了,为什么呢?
因为空间要爆,大佬告诉我要开滚动,看看ijk都是由-1转移过来的,那么任选一个都可以吧?果断选了k……然而在for循环中,k是最后枚举的,k对应了很多值,mod2之后就重复对应了……
听大佬的建议,我把dp重新定义为了 两个人都取了i个球,第一个人去j个上排,第二个人取k个上排,然后i开滚动
现在想来应该可以不用改dp定义,直接i开滚动也行,因为i是第一个for的,不至于会出事
初值也是挺有讲究的东西
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int N=500+5;
const int mod=1024523;
int n,m;
char c[N],d[N],a[N],b[N];
int dp[2][N][N];
int main(){
scanf("%d%d",&n,&m);
scanf("%s%s",c+1,d+1);
for(int i=1;i<=n;i++){
a[n-i+1]=c[i];
}
for(int i=1;i<=m;i++){
b[m-i+1]=d[i];
}
dp[0][0][0]=1;
for(int i=1;i<=n+m;i++){
for(int j=max(0,i-m);j<=min(i,n);j++){
for(int k=max(0,i-m);k<=min(i,n);k++){
dp[i%2][j][k]=0;//在滚啊,上一次的值要清零
if(a[j]==a[k]&&j-1>=0&&k-1>=0) dp[i%2][j][k]=(dp[i%2][j][k]+dp[(i-1)%2][j-1][k-1])%mod;
if(i-k<=m&&a[j]==b[i-k]&&j-1>=0) dp[i%2][j][k]=(dp[i%2][j][k]+dp[(i-1)%2][j-1][k])%mod;
if(i-j<=m&&b[i-j]==a[k]&&k-1>=0) dp[i%2][j][k]=(dp[i%2][j][k]+dp[(i-1)%2][j][k-1])%mod;
if(i-j<=m&&i-k<=m&&b[i-j]==b[i-k]) dp[i%2][j][k]=(dp[i%2][j][k]+dp[(i-1)%2][j][k])%mod;
}
}
}
printf("%d",(dp[(m+n)%2][n][n])%mod);
return 0;
}
总结:
1、灵活的根据某些性质降维
2、开滚动数组的时候要注意开法,不能互相影响
3、如果滚动数组不是直接赋值覆盖的话,需要清零
【bzoj1566】【管道取珠】竟然是dp题(浅尝ACM-E)的更多相关文章
- 洛谷1758 BZOJ1566 管道取珠题解
题目链接 一道人类智慧的dp题 首先我们可以将∑ai^2转化为求取两次,两次一样的方案数 然后用f[i][j][k][l]表示第一个人在第一个串中取到i第二个串中取到j 第二个人在一个串中取到k第二个 ...
- 【BZOJ1566】【NOI2009】管道取珠(动态规划)
[BZOJ1566][NOI2009]管道取珠(动态规划) 题面 BZOJ 题解 蛤?只有两档部分分.一脸不爽.jpg 第一档?爆搜,这么显然,爆搜+状压最后统计一下就好了 #include<i ...
- BZOJ1566 【NOI2009】管道取珠
题面 这是一道DP神题,直到我写下这句题解时也没有想明白…… 首先,这道题要我们求所有(不同输出序列的方案数)的平方和,于是我们当然就想到求所有不同输出序列的方案数……(大雾) .这道题一个巧妙的地方 ...
- 【BZOJ 1566】 1566: [NOI2009]管道取珠 (DP)
1566: [NOI2009]管道取珠 Time Limit: 20 Sec Memory Limit: 650 MBSubmit: 1659 Solved: 971 Description In ...
- Bzoj 1566: [NOI2009]管道取珠(DP)
1566: [NOI2009]管道取珠 Time Limit: 20 Sec Memory Limit: 650 MB Submit: 1558 Solved: 890 [Submit][Status ...
- 动态规划:NOI 2009 管道取珠
[NOI2009] 管道取珠 输入文件:ballb.in 输出文件:ballb.out 简单对比 时间限制:1 s 内存限制:512 MB #include <iostream> ...
- BZOJ 1566 【NOI2009】 管道取珠
题目链接:管道取珠 这道题思路还是很巧妙的. 一开始我看着那个平方不知所措……看了题解后发现,这种问题有一类巧妙的转化.我们可以看成两个人来玩这个游戏,那么答案就是第二个人的每个方案在第一个人的所有方 ...
- NOI2009 管道取珠 神仙DP
原题链接 原题让求的是\(\sum\limits a_i^2\),这个东西直接求非常难求.我们考虑转化一下问题. 首先把\(a_i^2\)拆成\((1+1+...+1)(1+1+...+1)\),两个 ...
- BZOJ 1566 管道取珠(DP)
求方案数的平方之和.这个看起来很难解决.如果转化为求方案数的有序对的个数.那么就相当于求A和B同时取,最后序列一样的种数. 令dp[i][j][k]表示A在上管道取了i个,下管道取了j个,B在上管道取 ...
- BZOJ.1566.[NOI2009]管道取珠(DP 思路)
BZOJ 洛谷 考虑\(a_i^2\)有什么意义:两个人分别操作原序列,使得得到的输出序列都为\(i\)的方案数.\(\sum a_i^2\)就是两人得到的输出序列相同的方案数. \(f[i][j][ ...
随机推荐
- Python全栈工程师(异常(高级)、运算符重载)
ParisGabriel 每天坚持手写 一天一篇 决定坚持几年 为了梦想为了信仰 开局一张图 Python人工智能从入门到精通 对象的属性管理函数: getattr ...
- 孤荷凌寒自学python第四十一天python的线程同步之Event对象
孤荷凌寒自学python第四十一天python的线程同步之Event对象 (完整学习过程屏幕记录视频地址在文末,手写笔记在文末) 鉴于Lock锁与RLock锁均宣告没有完全完成同步文件操作的问题,于 ...
- PHP连接mysql数据库进行增删改查--修稿数据
<?php $id = $_GET['id']; $db = new Mysqli("localhost","root","root" ...
- 如何在CentOS7上改变网络接口名
如何在CentOS7上改变网络接口名 传统上,Linux的网络接口被枚举为eth[0123...],但这些名称并不一定符合实际的硬件插槽,PCI位置,USB接口数量等,这引入了一个不可预知的命名问题( ...
- [中山市选2011][bzoj2440] 完全平方数 [二分+莫比乌斯容斥]
题面 传送门 思路 新姿势get 莫比乌斯容斥 $\sum_{i=1}{n}\mu(i)f(i)$ 这个东西可以把所有没有平方质因子的东西表示出来,还能容斥掉重复的项 证明是根据莫比乌斯函数的定义,显 ...
- NOI退役啦
没进前一百 签的上交一本 高三加油喽
- 公共文件js加载
头部:例如 <header id="header" class="clearfix"> <a class="col-xs-9&quo ...
- python的pip安装
http://blog.csdn.net/liuchunming033/article/details/39578019
- python注解(装饰器)的用法
带参数的要用三层def,第一层写注解里的参数,第二层写函数,第三层写具体逻辑. 如果是不带参数的注解,直接使用后两层即可 def needPermission(permissionstr): def ...
- 将本地访问ip映射成域名
通过修改以下地址 C:\WINDOWS\system32\drivers\etc\hosts 加进你自己的如: 192.168.1.101 www.helloworld.com 配置nginx代理u ...