洛谷P1023 税收与补贴问题
P1023 税收与补贴问题
题目背景
每样商品的价格越低,其销量就会相应增大。现已知某种商品的成本及其在若干价位上的销量(产品不会低于成本销售),并假设相邻价位间销量的变化是线性的且在价格高于给定的最高价位后,销量以某固定数值递减。(我们假设价格及销售量都是整数)
对于某些特殊商品,不可能完全由市场去调节其价格。这时候就需要政府以税收或补贴的方式来控制。(所谓税收或补贴就是对于每个产品收取或给予生产厂家固定金额的货币)
题目描述
你是某家咨询公司的项目经理,现在你已经知道政府对某种商品的预期价格,以及在各种价位上的销售情况。要求你确定政府对此商品是应收税还是补贴的最少金额(也为整数),才能使商家在这样一种政府预期的价格上,获取相对其他价位上的最大总利润。
总利润=单位商品利润*销量
单位商品利润=单位商品价格 - 单位商品成本 (- 税金 or + 补贴)
输入输出格式
输入格式:
输入的第一行为政府对某种商品的预期价,第二行有两个整数,第一个整数为商品成本,第二个整数为以成本价销售时的销售量,以下若干行每行都有两个整数,第一个为某价位时的单价,第二个为此时的销量,以一行-1,-1表示所有已知价位及对应的销量输入完毕,输入的最后一行为一个单独的整数表示在已知的最高单价外每升高一块钱将减少的销量。
输出格式:
输出有两种情况:若在政府预期价上能得到最大总利润,则输出一个单独的整数,数的正负表示是补贴还是收税,数的大小表示补贴或收税的金额最小值。若有多解,取绝对值最小的输出。
如在政府预期价上不能得到最大总利润,则输出“NO SOLUTION”。
输入输出样例
31
28 130
30 120
31 110
-1 -1
15
4
/*
首先表示题目很难理解,先来解释一下题意
就从样例开始分析。
输入是:
31 28 130 30 120 31 110 -1 -1 15
意思就是政府预期价是31元。成本28元,按成本销售的时候可以买130件产品。
每个卖30元的时候可以卖120个,
每个卖31元(输入的最高价位)的时候可以卖110个,
每个卖32元的时候可以卖:110-15=95个。
每个卖33元的时候可以卖:110-15-15=80个。
每个卖34元的时候可以卖:110-15-15-15=65个。
... 因为“相邻价位之间的销量变化是均匀的”,因此28元卖130个,30元卖120个就可以知道
29元卖125个(平均每元减少的销量是(130-120) div (30-28)=5)
输出是4,我们来解释一下为什么是4。
4代表补贴是4元,所以:
在卖28元的时候,总利润是:(28-28+4)*130=520元,
在卖29元的时候,总利润是:(29-28+4)*125=625元,
在卖30元的时候,总利润是:(30-28+4)*120=720元,
在卖31的时候,总利润是:(31-28+4)*110=770元,
在卖32元的时候,总利润是:(32-28+4)*95=760元,
... 在卖38元的时候,总利润是:(38-28+4)*5=70元,
显然可能的价位就是28~38了。(不能低于成本,卖39的时候销售量就是负数了)
可以看出,现在卖31元最划算,所以人们都愿意卖31元,这样一来不就达到政府的目的了吗!!
而当补贴是0,1,2,3的时候卖31元并不是最划算的,政府的目的达不到,你当然就没有分啦! 所以我就直接枚举答案
*/
#include<iostream>
#include<cstdio>
using namespace std;
int goal,org,orgn,k,a1,a2,a3;
double b1,b2,b3;
bool check(int x){
double c1=(a1-org+x)*b1;
double c2=(a2-org+x)*b2;
double c3=(a3-org+x)*b3;
if(c2>=c1&&c2>=c3)return ;
return ;
}
int main(){
//freopen("Cola.txt","r",stdin);
scanf("%d%d%d",&goal,&org,&orgn);
a1=goal-,a2=goal,a3=goal+;
int x,y,prex=org,prey=orgn;
while(){
scanf("%d%d",&x,&y);
if(x==-&&y==-)break;
if(a1==x)b1=y;
else if(a1<x&&a1>prex)b1=prey+((double)(y-prey)/(double)(x-prex))*(a1-prex);
if(a2==x)b2=y;
else if(a2<x&&a2>prex)b2=prey+((double)(y-prey)/(double)(x-prex))*(a2-prex);
if(a3==x)b3=y;
else if(a3<x&&a3>prex)b3=prey+((double)(y-prey)/(double)(x-prex))*(a3-prex);
prex=x;prey=y;
}
scanf("%d",&k);
if(a1>prex)b1=prey-(a1-prex)*k;
if(a2>prex)b2=prey-(a2-prex)*k;
if(a3>prex)b3=prey-(a3-prex)*k;
for(int i=;i<=;i++){
x=i;
if(check(x)){
printf("%d",x);
return ;
}
x=-i;
if(check(x)){
printf("%d",x);
return ;
}
}
printf("NO SOLUTION");
return ;
}
洛谷P1023 税收与补贴问题的更多相关文章
- 洛谷 P1023 税收与补贴问题 (2000NOIP提高组)
洛谷 P1023 税收与补贴问题 (2000NOIP提高组) 题意分析 一开始没理解题意.啰啰嗦嗦一大堆.看了别人的题解才明白啥意思. 对于样例来说,简而言之: 首先可以根据题目推算出来 28 130 ...
- 洛谷——P1023 税收与补贴问题
P1023 税收与补贴问题 题目背景 每样商品的价格越低,其销量就会相应增大.现已知某种商品的成本及其在若干价位上的销量(产品不会低于成本销售),并假设相邻价位间销量的变化是线性的且在价格高于给定的最 ...
- 洛谷 P1023 税收与补贴问题
P1023 税收与补贴问题 题目背景 每样商品的价格越低,其销量就会相应增大.现已知某种商品的成本及其在若干价位上的销量(产品不会低于成本销售),并假设相邻价位间销量的变化是线性的且在价格高于给定的最 ...
- [NOIP2000] 提高组 洛谷P1023 税收与补贴问题
题目背景 每样商品的价格越低,其销量就会相应增大.现已知某种商品的成本及其在若干价位上的销量(产品不会低于成本销售),并假设相邻价位间销量的变化是线性的且在价格高于给定的最高价位后,销量以某固定数值递 ...
- Java实现 洛谷 P1023 税收与补贴问题
import java.util.Scanner; public class Main { public static void main(String[] args){ Scanner in = n ...
- P1023 税收与补贴问题
题目背景 每样商品的价格越低,其销量就会相应增大.现已知某种商品的成本及其在若干价位上的销量(产品不会低于成本销售),并假设相邻价位间销量的变化是线性的且在价格高于给定的最高价位后,销量以某固定数值递 ...
- P1023 税收与补贴问题 (模拟)
题目链接 Solution 比较恶心的模拟题(主要是难看懂题意其实) 题意戳这里 然后根据一些简单的数学常识,可以知道这是一个二次函数. 所以我们每次枚举一个值,然后判定政府给出的价格是否是顶点即可. ...
- 【00NOIP普及组】税收与补贴问题(信息学奥赛一本通 1911)( 洛谷 1023)
[题目描述] 每样商品的价格越低,其销量就会相应增大.现已知某种商品的成本及其在若干价位上的销量(产品不会低于成本销售),并假设相邻价位间销量的变化是线性的且在价格高于给 定的最高价位后,销量以某固定 ...
- 【noip】跟着洛谷刷noip题
传送门 1.铺地毯 d1t1 模拟 //Twenty #include<cstdio> #include<cstdlib> #include<iostream> # ...
随机推荐
- 数据结构C语言版干货------->线性表之顺序表
一:头文件定义 /*************************************************************************** *项目 数据结构 *概要 逻辑 ...
- css绝对对齐
方法1:使用text-align:justify 能够兼容所有的浏览器,但是一定要在模块和模块或者字之间存在空格,换行符或者制表符,这样才能起作用 ;;} /* 说明: 1.IE中要实现块内单行两端对 ...
- 9 python 数据类型—字典
字典是python中唯一的映射类型,采用键值对(key-value)的形式存储数据.python对key进行哈希函数运算,根据计算的结果决定value的存储地址,所以字典是无序存储的,且key必须是可 ...
- 数学建模--matlab基础知识
虽然python也能做数据分析,不过参加数学建模,咱还是用专业的 1. Matlab-入门篇:Hello world! 程序员入门第一式: disp(‘hello world!’) 2. 基本运算 先 ...
- Android开发中高效的数据结构
android开发中,在java2ee或者android中常用的数据结构有Map,List,Set,但android作为移动平台,有些api(很多都是效率问题)显然不够理想,本着造更好轮子的精神,an ...
- PLSQL查询最近编绎、创建、修改过的过程函数
SELECT * FROM User_Objects t WHERE t.Object_Type IN ('PROCEDURE', 'PACKAGE BODY', 'FUNCTION') AND t. ...
- Anthem.NET 的回调流程图
下面用一个最简单的 anthem:Button 回调作为例子,理清回调过程中执行函数的次序.代码如下: <%@ Page Language="C#" AutoEventWir ...
- 从python2,python3编码问题引伸出的通用编码原理解释
今天使用python2编码时遇到这样一条异常UnicodeDecodeError: ‘ascii’ code can’t decode byte 0xef 发现是编码问题,但是平常在python3中几 ...
- 冷备手工完全恢复(recover database,recover tablespace,recover datafile)
冷备手工完全恢复 1. 手工完全恢复三种级别: recover database: 所有或大部分datafile丢失,一般是在mount状态完成.recover tablespace: 非关 ...
- 针对nginx的内核优化
关于内核参数的优化: net.ipv4.tcp_max_tw_buckets = 6000timewait的数量,默认是180000.net.ipv4.ip_local_port_range = 10 ...