题目链接:点击打开链接

Check the difficulty of problems

Time Limit: 2000MS   Memory Limit: 65536K
Total Submissions: 8583   Accepted: 3656

Description

Organizing a programming contest is not an easy job. To avoid making the problems too difficult, the organizer usually expect the contest result satisfy the following two terms:

1. All of the teams solve at least one problem.

2. The champion (One of those teams that solve the most problems) solves at least a certain number of problems.

Now the organizer has studied out the contest problems, and through the result of preliminary contest, the organizer can estimate the probability that a certain team can successfully solve a certain problem.

Given the number of contest problems M, the number of teams T, and the number of problems N that the organizer expect the champion solve at least. We also assume that team i solves problem j with the probability Pij (1 <= i <= T, 1<= j <= M). Well, can you calculate the probability that all of the teams solve at least one problem, and at the same time the champion team solves at least N problems?

Input

The input consists of several test cases. The first line of each test case contains three integers M (0 < M <= 30), T (1 < T <= 1000) and N (0 < N <= M). Each of the following T lines contains M floating-point numbers in the range of [0,1]. In these T lines, the j-th number in the i-th line is just Pij. A test case of M = T = N = 0 indicates the end of input, and should not be processed.

Output

For each test case, please output the answer in a separate line. The result should be rounded to three digits after the decimal point.

Sample Input

2 2 2
0.9 0.9
1 0.9
0 0 0

Sample Output

0.972

题目大意:给出几个队,几道题,第一名至少A的题数N,求每队都至少有一道A并且冠军队伍达到N题的概率

思路:只知道是概率dp(神犇说是简单的dp)主要还是怎么规划好状态。(初始化和状态转移方程)

AC代码:

#include<iostream>
#include<cstdio>
using namespace std; int M, T, N;
double dp[1010][50][50];//dp[i][j][k] 第i队前j题过k道的概率
double s[1010][50];//s[i][k] 第i队过小于等于k的概率
double p[1010][50]; int main() {
while(~scanf("%d %d %d", &M, &T, &N)) {
if(M+T+N == 0)
break;
for(int i = 1; i <= T; i++)
for(int j = 1; j <= M; j++)
scanf("%lf", &p[i][j]);
for(int i = 1; i <= T; i++) {
dp[i][0][0] = 1;//前0题过0道概率为1
for(int j = 1; j <= M; j++) {
dp[i][j][0] = dp[i][j-1][0] * (1-p[i][j]);//前j题过0道 = 前j-1题概率 * 本题不过概率
}
for(int j = 1; j <= M; j++) { //前j题过k道 = 前j-1题过k-1道的概率 * 本题过的概率 + 前j-1题过k道 * 本题不过概率
for(int k = 1; k <= j; k++) { //写成了k <= M
dp[i][j][k] = dp[i][j-1][k-1] * p[i][j] + dp[i][j-1][k] * (1-p[i][j]);
}
}
s[i][0] = dp[i][M][0];//过小于等于0道概率 就是前M题过0道概率
for(int k = 1; k <= M; k++) {
s[i][k] = s[i][k-1] + dp[i][M][k];// s[i][k] = dp[i][M][0] + dp[i][M][1] + ...+ dp[i][M][k];
}
}
double P1 = 1;
double P2 = 1;
for(int i = 1; i <= T; i++) {
P1 *= (1-s[i][0]); // 所有队都至少过一道概率
P2 *= (s[i][N-1] - s[i][0]); //所有对都过 1~N-1道 概率
}
printf("%.3lf\n", P1-P2);
}
}

POJ2151-Check the difficulty of problems的更多相关文章

  1. [POJ2151]Check the difficulty of problems (概率dp)

    题目链接:http://poj.org/problem?id=2151 题目大意:有M个题目,T支队伍,第i个队伍做出第j个题目的概率为Pij,问每个队伍都至少做出1个题并且至少有一个队伍做出N题的概 ...

  2. [poj2151]Check the difficulty of problems概率dp

    解题关键:主要就是概率的推导以及至少的转化,至少的转化是需要有前提条件的. 转移方程:$dp[i][j][k] = dp[i][j - 1][k - 1]*p + dp[i][j - 1][k]*(1 ...

  3. POJ 2151 Check the difficulty of problems

    以前做过的题目了....补集+DP        Check the difficulty of problems Time Limit: 2000MS   Memory Limit: 65536K ...

  4. Check the difficulty of problems

    Check the difficulty of problems Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 5830 Acc ...

  5. Check the difficulty of problems(POJ 2151)

    Check the difficulty of problems Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 5457   ...

  6. POJ 2151 Check the difficulty of problems (动态规划-可能DP)

    Check the difficulty of problems Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 4522   ...

  7. POJ 2151 Check the difficulty of problems 概率dp+01背包

    题目链接: http://poj.org/problem?id=2151 Check the difficulty of problems Time Limit: 2000MSMemory Limit ...

  8. 【POJ】2151:Check the difficulty of problems【概率DP】

    Check the difficulty of problems Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 8903   ...

  9. [ACM] POJ 2151 Check the difficulty of problems (概率+DP)

    Check the difficulty of problems Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 4748   ...

  10. 【poj2151】 Check the difficulty of problems

    http://poj.org/problem?id=2151 (题目链接) 题意 T支队伍,一共M道题,第i支队伍解出第j道题的概率为p[i][j].问每支队伍至少解出1道题并且解题最多的的队伍至少解 ...

随机推荐

  1. ADO:连接,执行语句与关闭(sql server数据库)

    一,身份验证: sql server数据库连接身份验证有两种:windows身份验证和SQL Server身份验证 windows验证:是使用windows的安全子系统对用户连接进行有效性验证.(个人 ...

  2. torch7 安装中Missing dependencies for nn:moses >= 1错误解决办法

    Torch7.0安装步骤(默认安装路径是在home下): git clone https://github.com/torch/distro.git ~/torch --recursive cd ~/ ...

  3. PS 滤镜— —Marble 效果

    clc; clear all; close all; addpath('E:\PhotoShop Algortihm\Image Processing\PS Algorithm'); I=imread ...

  4. Arc065_E Manhattan Compass

    平面上有$N$个点$(X_i\space, Y_i)$,定义$D(a,b)=|X_a-X_b|+|Y_a-Y_b|$. 如果你当前在$(p,q)$,这个无序二元组(即$(p,q)$和$(q,p)$被认 ...

  5. eclipse IDE注释模板设置

    1.windows->preference—>java->code style->code template,弹出下图所示的界面.

  6. [转]JavaScript文件操作(2)-FileReader

    在上篇文章中,我介绍了在JavaScript操作文件,重点讲了如何取得File对象. 这些对象包含的文件的元数据在上传或者拖放到浏览器中时可以获取到.有了文件当然接下来就是读取文件了. FileRea ...

  7. HDU1247(经典字典树)

    Hat’s Words Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total ...

  8. MyBatis动态传入表名,字段名参数的解决办法---statementType用法

    statementType="STATEMENT" 要实现动态传入表名.列名,需要做如下修改 添加属性statementType="STATEMENT" 同时s ...

  9. ES6学习之Proxy

    定义:“代理器”,用于修改某些操作的默认行为,等同于在语言层面做出修改,所以属于一种“元编程”(meta programming),即对编程语言进行编程.可以对外界的访问进行过滤和改写. 语法: va ...

  10. linux日常管理-防火墙netfilter工具-iptables-3

    可以指定chain链的总开关 把链的关掉,针对端口开放,更加安全,但是不建议这么做 实例:filter表INPUT链.INPUT策略改成DROP. 把192.168.0.0/24网段开通22端口.对所 ...