Rikka with Graph II

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)
Total Submission(s): 1051    Accepted Submission(s): 266

Problem Description
As we know, Rikka is poor at math. Yuta is worrying about this situation, so he gives Rikka some math tasks to practice. There is one of them:

Yuta has a non-direct graph with n vertices and n edges. Now he wants you to tell him if there exist a Hamiltonian path.

It is too difficult for Rikka. Can you help her?

 
Input
There are no more than 100 testcases.

For each testcase, the first line contains a number n(1≤n≤1000).

Then n lines follow. Each line contains two numbers u,v(1≤u,v≤n) , which means there is an edge between u and v.

 
Output
For each testcase, if there exist a Hamiltonian path print "YES" , otherwise print "NO".
 
Sample Input
4
1 1
1 2
2 3
2 4
3
1 2
2 3
3 1
 
Sample Output
NO
YES
 
 
Hint
For the second testcase, One of the path is 1->2->3
If you doesn't know what is Hamiltonian path, click here (https://en.wikipedia.org/wiki/Hamiltonian_path).
 
Source
 
 
题目大意:就给你n个顶点,n条边,问你是不是可以在图中找到哈密顿路径。
 
解题思路:对于n条边的图,如果要形成哈密顿路径,则必然要用掉n-1条边,形成一条链,起点和终点的度为1,其余点的度为2。剩下的一条边,可能有下面的情况:
 
情况1:形成自环,自环对于哈密顿路径没影响,可以忽略。
情况2:形成重边,重边对于哈密顿路径也没影响,可以忽略。
情况3:起点或终点跟非终点或非起点连一条边,这时候从终点或起点dfs。
情况4:起点跟终点连边,所有点的度都为2,从任意点dfs。
 
吐糟:自己写的时候vector清空的时候放在了最后,因为中间有continue,结果就呵呵了。。。一直超时,纳闷死了。再者就是没有考虑清楚,开始写的时候没有把所有路径都走完,会漏掉情况,不该呀~~~
 
#include<bits/stdc++.h>
using namespace std;
const int maxn=2100;
const int INF=0x3f3f3f3f;
int degree[maxn];
int vis[maxn],gra[maxn][maxn];
vector<int>G[maxn];
int n;
bool dfs(int u,int fa,int cn){
if(cn==n){
return true;
}
for(int i=0;i<G[u].size();i++){
int v=G[u][i];
if(vis[v]||v==fa){
continue;
}
vis[v]=1;
if(dfs(v,u,cn+1))
return true;
vis[v]=0; //如果没有这句,会过不了这个样例。5 2 3 2 4 4 1 1 2 5 4
}
return false;
}
void init(){//以后尽量放在前面情况,不装B
for(int i=0;i<=n+2;i++)
G[i].clear();
memset(degree,0,sizeof(degree));
memset(vis,0,sizeof(vis));
memset(gra,0,sizeof(gra));
}
int main(){
int a,b;
while(scanf("%d",&n)!=EOF){
init();
for(int i=0;i<n;i++){
scanf("%d%d",&a,&b);
if(gra[a][b]==1||a==b)
continue;
gra[a][b]=gra[b][a]=1;
G[a].push_back(b);
G[b].push_back(a);
degree[a]++,degree[b]++;
}
int deg1=0,idx=1;
for(int i=1;i<=n;i++){
if(degree[i]==1){
deg1++;
idx=i;
}
}
if(deg1>2){ //度为1的大于2个,必然不行
puts("NO");
continue;
}
vis[idx]=1;
if(dfs(idx,0,1))
puts("YES");
else puts("NO");
}
return 0;
}

  

 
 

HDU 5424——Rikka with Graph II——————【哈密顿路径】的更多相关文章

  1. hdu 5424 Rikka with Graph II(dfs+哈密顿路径)

    Problem Description   As we know, Rikka is poor at math. Yuta is worrying about this situation, so h ...

  2. hdu 5424 Rikka with Graph II (BestCoder Round #53 (div.2))(哈密顿通路判断)

    http://acm.hdu.edu.cn/showproblem.php?pid=5424 哈密顿通路:联通的图,访问每个顶点的路径且只访问一次 n个点n条边 n个顶点有n - 1条边,最后一条边的 ...

  3. HDU 5424 Rikka with Graph II

    题目大意: 在 N 个点 N 条边组成的图中判断是否存在汉密尔顿路径. 思路:忽略重边与自回路,先判断是否连通,否则输出"NO",DFS搜索是否存在汉密尔顿路径. #include ...

  4. HDU 5831 Rikka with Parenthesis II(六花与括号II)

    31 Rikka with Parenthesis II (六花与括号II) Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536 ...

  5. HDU 5831 Rikka with Parenthesis II (栈+模拟)

    Rikka with Parenthesis II 题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=5831 Description As we kno ...

  6. hdu 5831 Rikka with Parenthesis II 线段树

    Rikka with Parenthesis II 题目连接: http://acm.hdu.edu.cn/showproblem.php?pid=5831 Description As we kno ...

  7. HDU 5631 Rikka with Graph 暴力 并查集

    Rikka with Graph 题目连接: http://acm.hdu.edu.cn/showproblem.php?pid=5631 Description As we know, Rikka ...

  8. HDU 5422 Rikka with Graph

    Rikka with Graph Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others) ...

  9. HDU 6090 Rikka with Graph

    Rikka with Graph 思路: 官方题解: 代码: #include<bits/stdc++.h> using namespace std; #define ll long lo ...

随机推荐

  1. CSS预处理器(SASS和LESS)

    Sass框架应用Sass简介 Sass又名SCSS,是CSS预处理器之一,它能让你更好更轻松的工作.Sass官网是这样描述Sass的:**Sass是一门高于CSS的元语言,能用来清晰的.结构化地描述文 ...

  2. 百度地图 JS API开发Demo01

    百度地图DEMO     <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http: ...

  3. c++滚动数组

    说来惭愧,我老早以前就学习了dp,可直到最近才知道滚动数组. 所以说,滚动数组是什么呢? 它是一种优化dp空间复杂度的思想. 在dp转移时,我们往往不需要之前推的所有的,而是只需要前一两个转移的. 我 ...

  4. Use Vim as a Python IDE

    Use Vim as a Python IDE I love vim and often use it to write Python code. Here are some useful plugi ...

  5. ACM 离散化处理

    使用STL算法离散化: 思路:先排序,再删除重复元素,然后就是索引元素离散化后对应的值. 1.  unique():   头文件为algorithm unique的作用是“去掉”容器中相邻元素的重复元 ...

  6. Lyft Level 5 Challenge 2018 - Final Round (Open Div. 2) B 1075B (思维)

    B. Taxi drivers and Lyft time limit per test 1 second memory limit per test 256 megabytes input stan ...

  7. Install AntContrib

    link: http://www.neiland.net/blog/article/how-to-install-ant-contrib/ Step 1: Get ANT-Contrib And In ...

  8. P2596 [ZJOI2006]书架(splay)

    [题目链接] https://www.luogu.org/problemnew/show/P2596 平衡树,需支持五个操作: 1. 将某元素置顶:将元素旋到根,然后将左子树合并到该元素的后继 2. ...

  9. Django 想要单独执行文件

    Django  单独文件执行  文件  我是在项目根目录文件创建的. 配置文件: #!/usr/bin/env python import os import sys if __name__ == & ...

  10. Gym - 101572G Galactic Collegiate Programming Contest 小根堆(set)

    题目传送门 题目大意: n个人,m次提交,每次提交都代表某支队伍做出一题,并且给出罚时,让你输出每次提交后,编号为1的队伍的排名. 思路: 首先处理ac和罚时,由于罚时最大1000,最多有1e5次,要 ...