Rikka with Graph II

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)
Total Submission(s): 1051    Accepted Submission(s): 266

Problem Description
As we know, Rikka is poor at math. Yuta is worrying about this situation, so he gives Rikka some math tasks to practice. There is one of them:

Yuta has a non-direct graph with n vertices and n edges. Now he wants you to tell him if there exist a Hamiltonian path.

It is too difficult for Rikka. Can you help her?

 
Input
There are no more than 100 testcases.

For each testcase, the first line contains a number n(1≤n≤1000).

Then n lines follow. Each line contains two numbers u,v(1≤u,v≤n) , which means there is an edge between u and v.

 
Output
For each testcase, if there exist a Hamiltonian path print "YES" , otherwise print "NO".
 
Sample Input
4
1 1
1 2
2 3
2 4
3
1 2
2 3
3 1
 
Sample Output
NO
YES
 
 
Hint
For the second testcase, One of the path is 1->2->3
If you doesn't know what is Hamiltonian path, click here (https://en.wikipedia.org/wiki/Hamiltonian_path).
 
Source
 
 
题目大意:就给你n个顶点,n条边,问你是不是可以在图中找到哈密顿路径。
 
解题思路:对于n条边的图,如果要形成哈密顿路径,则必然要用掉n-1条边,形成一条链,起点和终点的度为1,其余点的度为2。剩下的一条边,可能有下面的情况:
 
情况1:形成自环,自环对于哈密顿路径没影响,可以忽略。
情况2:形成重边,重边对于哈密顿路径也没影响,可以忽略。
情况3:起点或终点跟非终点或非起点连一条边,这时候从终点或起点dfs。
情况4:起点跟终点连边,所有点的度都为2,从任意点dfs。
 
吐糟:自己写的时候vector清空的时候放在了最后,因为中间有continue,结果就呵呵了。。。一直超时,纳闷死了。再者就是没有考虑清楚,开始写的时候没有把所有路径都走完,会漏掉情况,不该呀~~~
 
#include<bits/stdc++.h>
using namespace std;
const int maxn=2100;
const int INF=0x3f3f3f3f;
int degree[maxn];
int vis[maxn],gra[maxn][maxn];
vector<int>G[maxn];
int n;
bool dfs(int u,int fa,int cn){
if(cn==n){
return true;
}
for(int i=0;i<G[u].size();i++){
int v=G[u][i];
if(vis[v]||v==fa){
continue;
}
vis[v]=1;
if(dfs(v,u,cn+1))
return true;
vis[v]=0; //如果没有这句,会过不了这个样例。5 2 3 2 4 4 1 1 2 5 4
}
return false;
}
void init(){//以后尽量放在前面情况,不装B
for(int i=0;i<=n+2;i++)
G[i].clear();
memset(degree,0,sizeof(degree));
memset(vis,0,sizeof(vis));
memset(gra,0,sizeof(gra));
}
int main(){
int a,b;
while(scanf("%d",&n)!=EOF){
init();
for(int i=0;i<n;i++){
scanf("%d%d",&a,&b);
if(gra[a][b]==1||a==b)
continue;
gra[a][b]=gra[b][a]=1;
G[a].push_back(b);
G[b].push_back(a);
degree[a]++,degree[b]++;
}
int deg1=0,idx=1;
for(int i=1;i<=n;i++){
if(degree[i]==1){
deg1++;
idx=i;
}
}
if(deg1>2){ //度为1的大于2个,必然不行
puts("NO");
continue;
}
vis[idx]=1;
if(dfs(idx,0,1))
puts("YES");
else puts("NO");
}
return 0;
}

  

 
 

HDU 5424——Rikka with Graph II——————【哈密顿路径】的更多相关文章

  1. hdu 5424 Rikka with Graph II(dfs+哈密顿路径)

    Problem Description   As we know, Rikka is poor at math. Yuta is worrying about this situation, so h ...

  2. hdu 5424 Rikka with Graph II (BestCoder Round #53 (div.2))(哈密顿通路判断)

    http://acm.hdu.edu.cn/showproblem.php?pid=5424 哈密顿通路:联通的图,访问每个顶点的路径且只访问一次 n个点n条边 n个顶点有n - 1条边,最后一条边的 ...

  3. HDU 5424 Rikka with Graph II

    题目大意: 在 N 个点 N 条边组成的图中判断是否存在汉密尔顿路径. 思路:忽略重边与自回路,先判断是否连通,否则输出"NO",DFS搜索是否存在汉密尔顿路径. #include ...

  4. HDU 5831 Rikka with Parenthesis II(六花与括号II)

    31 Rikka with Parenthesis II (六花与括号II) Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536 ...

  5. HDU 5831 Rikka with Parenthesis II (栈+模拟)

    Rikka with Parenthesis II 题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=5831 Description As we kno ...

  6. hdu 5831 Rikka with Parenthesis II 线段树

    Rikka with Parenthesis II 题目连接: http://acm.hdu.edu.cn/showproblem.php?pid=5831 Description As we kno ...

  7. HDU 5631 Rikka with Graph 暴力 并查集

    Rikka with Graph 题目连接: http://acm.hdu.edu.cn/showproblem.php?pid=5631 Description As we know, Rikka ...

  8. HDU 5422 Rikka with Graph

    Rikka with Graph Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others) ...

  9. HDU 6090 Rikka with Graph

    Rikka with Graph 思路: 官方题解: 代码: #include<bits/stdc++.h> using namespace std; #define ll long lo ...

随机推荐

  1. .NET DataTable DataSet转json代码

    /// <summary> /// dataTable转换成Json格式 /// </summary> /// <param name="dt"> ...

  2. 公司内部Wiki及搭建wiki系统-confluence

    Wiki 是一个协同著作平台或称开放编辑系统.我们可以用Wiki来建设帮助系统,知识库系统.国内公共wiki最著名就是百度百科.那公司内部为什么要使用wiki呢? 2.内部wiki的作用 1.鼓励分享 ...

  3. Unity自带IAP插件使用(googleplay)

    https://blog.csdn.net/ar__ha/article/details/64439872 Unity Services里的Unity IAP对于IOS和GooglePlay的支付用这 ...

  4. luogu p4174 最大获利(最大权闭合子图)

    luogu p4174 最大获利(最大权闭合子图) 给定n个点,m条边,每条边有一个贡献,每个点有一个代价.选择一条边,会付出边所连两个点的代价,问最大代价. 我们换个建图方式:把图G中的边\(e_i ...

  5. jzoj4916. 【GDOI2017模拟12.9】完全背包问题 (背包+最短路)

    题面 题解 考场上蠢了--这么简单的东西都想不到-- 首先排序加去重. 先来考虑一下,形如 \[a_1x_1+a_2x_2+...a_nx_n=w,a_1<a_2<...<a_n,x ...

  6. Python之运算符以及基本数据类型的object

    一.运算符 1.算术运算符 % 求余运算 **   幂-返回x的y次幂 //   取整数-返回商的整数部分,例:9//2输出结果是4 2.比较运算符 == 等于 != 不等于 <> 不等于 ...

  7. js数据类型基础

    一.数据类型 数据类型包括:基本数据类型和引用数据类型 基本数据类型指的是简单的数据段,引用数据类型指的是有多个值构成的对象. 当我们把变量赋值给一个变量时,解析器首先要确认的就是这个值是基本类型值还 ...

  8. P1080 国王游戏

    题意: 让n 位大臣排成一排,国王站在队伍的最前面. 排好队后,所有的大臣都会获得国王奖赏的若干金币, 每位大臣获得的金币数分别是:排在该大臣前面的所有人的左手上的数的乘积除以他自己右手上的数,然后向 ...

  9. join与os.path.join

    Python中有join和os.path.join()两个函数,具体作用如下: join:连接字符串数组.将字符串.元组.列表中的元素以指定的字符(分隔符)连接生成一个新的字符串os.path.joi ...

  10. Qt 学习之路 2(16):深入 Qt5 信号槽新语法

    Qt 学习之路 2(16):深入 Qt5 信号槽新语法  豆子  2012年9月19日  Qt 学习之路 2  53条评论 在前面的章节(信号槽和自定义信号槽)中,我们详细介绍了有关 Qt 5 的信号 ...