题目描述

Hzwer的跳跳棋是在一条数轴上进行的。棋子只能摆在整点上。每个点不能摆超过一个棋子。

某一天,黄金大神和cjy用跳跳棋来做一个简单的游戏:棋盘上有3颗棋子,分别在a,b,c这三个位置。他们要通过最少的跳动把它们的位置移动成x,y,z。(棋子是没有区别的)

跳动的规则很简单,任意选一颗棋子,对一颗中轴棋子跳动。跳动后两颗棋子距离不变。一次只允许跳过1颗棋子。

写一个程序,首先判断是否可以完成任务。如果可以,输出最少需要的跳动次数。

输入

第一行包含三个整数,表示当前棋子的位置a b c。(互不相同)

第二行包含三个整数,表示目标位置x y z。(互不相同)

输出

如果无解,输出一行NO。

如果可以到达,第一行输出YES,第二行输出最少步数。

样例输入

1 2 3
0 3 5

样例输出

YES
2

提示

【范围】

20% 输入整数的绝对值均不超过10

40% 输入整数的绝对值均不超过10000

100% 绝对值不超过10^9

最近公共祖先

对于一个状态,例如2 3 7

中间可以往两侧跳,即2 3 7->1 2 7 / 2 3 7->2 7 11

两侧仅有靠近中间的能往中间跳,即2 3 7->3 4 7

那么所有的状态就能表示为一棵二叉树,第一种情况为其两个儿子,第二种为其父亲

但其实第一种情况并不重要,因为lca是一直找父亲,显然,根节点的三个棋是一个等差数列

问题转换为给定树上的两个结点,求其距离。如果两个节点

我们发现若记前两个数差t1,后两个数差t2,不妨设t1<t2

则左边最多往中间跳(t2-1)/t1次

然后只能右边往中间跳,是一个辗转相除的过程,即在logK的时间内我们可以用这种方法得到某个结点它向上K次后的结点,或者根节点,同时还可以顺便算下深度

很明显,如果初始情况和最终情况的根节点不一样,那么一定无解

那么只要求始终两个状态的深度d1,d2,将较深的调整到同一深度

然后二分/倍增求与lca的深度差x

ans=2*x+abs(d1-d2)

#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cmath>
using namespace std;
struct xxx{
int c[];
}a,b;
int dep;
xxx zou(xxx aa,int x)
{
xxx xx;
int t1=aa.c[]-aa.c[],t2=aa.c[]-aa.c[];
if(t1==t2)return aa;
if(t1<t2)
{
int yy=min(x,(t2-)/t1);dep+=yy;x-=yy;
xx.c[]=aa.c[]+yy*t1;xx.c[]=aa.c[]+yy*t1;xx.c[]=aa.c[];
}
if(t1>t2)
{
int yy=min(x,(t1-)/t2);dep+=yy;x-=yy;
xx.c[]=aa.c[];xx.c[]=aa.c[]-yy*t2;xx.c[]=aa.c[]-yy*t2;
}
if(!x)return xx;
else return zou(xx,x);
}
bool bj(xxx a,xxx b)
{
for(int i=;i<=;i++)if(a.c[i]!=b.c[i])return ;
return ;
}
int main()
{
int ans=;
for(int i=;i<=;i++)scanf("%d",&a.c[i]);
for(int i=;i<=;i++)scanf("%d",&b.c[i]);
sort(a.c+,a.c+);sort(b.c+,b.c+);
xxx xx1=zou(a,);int dep1=dep;dep=;
xxx xx2=zou(b,);int dep2=dep;dep=;
if(!bj(xx1,xx2)){puts("NO");return ;}
if(dep1>dep2){ans+=dep1-dep2;a=zou(a,dep1-dep2);dep1=dep2;}
if(dep1<dep2){ans+=dep2-dep1;b=zou(b,dep2-dep1);dep2=dep1;}
int l=,r=dep1+;
while(l<r)
{
int mid=(l+r)>>;
if(bj(zou(a,mid),zou(b,mid)))r=mid;
else l=mid+;
}
puts("YES");
printf("%d",ans+*l);
return ;
}

[9018_1563][bzoj_2144]跳跳棋的更多相关文章

  1. 跳跳棋(9018_1563)(BZOJ_2144)

    题目: Hzwer的跳跳棋是在一条数轴上进行的.棋子只能摆在整点上.每个点不能摆超过一个棋子. 某一天,黄金大神和cjy用跳跳棋来做一个简单的游戏:棋盘上有3颗棋子,分别在a,b,c这三个位置.他们要 ...

  2. 【LCA】bzoj 2144:跳跳棋

    2144: 跳跳棋 Time Limit: 10 Sec  Memory Limit: 259 MBSubmit: 248  Solved: 121[Submit][Status][Discuss] ...

  3. bzoj2144 【国家集训队2011】跳跳棋

    Description 跳跳棋是在一条数轴上进行的.棋子只能摆在整点上.每个点不能摆超过一个棋子.我们用跳跳棋来做一个简单的游戏:棋盘上有3颗棋子,分别在a,b,c这三个位置.我们要通过最少的跳动把他 ...

  4. [BZOJ 2144]跳跳棋

    Description 跳跳棋是在一条数轴上进行的.棋子只能摆在整点上.每个点不能摆超过一个棋子.我们用跳跳棋来做一个简单的游戏:棋盘上有3颗棋子,分别在a,b,c这三个位置.我们要通过最少的跳动把他 ...

  5. BZOJ2144跳跳棋——LCA+二分

    题目描述 跳跳棋是在一条数轴上进行的.棋子只能摆在整点上.每个点不能摆超过一个棋子.我们用跳跳棋来做一个简单的 游戏:棋盘上有3颗棋子,分别在a,b,c这三个位置.我们要通过最少的跳动把他们的位置移动 ...

  6. 洛谷 P1852 [国家集训队]跳跳棋 解题报告

    P1852 [国家集训队]跳跳棋 题目描述 跳跳棋是在一条数轴上进行的.棋子只能摆在整点上.每个点不能摆超过一个棋子. 我们用跳跳棋来做一个简单的游戏:棋盘上有3颗棋子,分别在\(a\),\(b\), ...

  7. P1852 [国家集训队]跳跳棋

    P1852 [国家集训队]跳跳棋 lca+二分 详细解析见题解 对于每组跳棋,我们可以用一个三元组(x,y,z)表示 我们发现,这个三元组的转移具有唯一性,收束性 也就是说,把每个三元组当成点,以转移 ...

  8. 【洛谷】1852:[国家集训队]跳跳棋【LCA】【倍增?】

    P1852 [国家集训队]跳跳棋 题目背景 原<奇怪的字符串>请前往 P2543 题目描述 跳跳棋是在一条数轴上进行的.棋子只能摆在整点上.每个点不能摆超过一个棋子. 我们用跳跳棋来做一个 ...

  9. 【BZOJ 2144】 2144: 跳跳棋 (倍增LCA)

    2144: 跳跳棋 Time Limit: 10 Sec  Memory Limit: 259 MBSubmit: 642  Solved: 307 Description 跳跳棋是在一条数轴上进行的 ...

随机推荐

  1. python3爬取咪咕音乐榜信息(附源代码)

    参照上一篇爬虫小猪短租的思路https://www.cnblogs.com/aby321/p/9946831.html,继续熟悉基础爬虫方法,本次爬取的是咪咕音乐的排名 咪咕音乐榜首页http://m ...

  2. HDU3853 概率DP

    LOOPS   Homura wants to help her friend Madoka save the world. But because of the plot of the Boss I ...

  3. Nginx 高级配置

    nginx官方网站:http://nginx.org/ 1.  Nginx连接后端的方式:反向代理(proxy_pass).直连fastcgi(fastcgi_pass) 例子: fastcgi_pa ...

  4. CodeForces 879D Teams Formation

    题意 将一个长度为\(n\)的数组重复\(m\)遍得到一个长度为\(n \times m\)的新序列,然后消掉新序列中连续\(k\)个相同的元素,不断重复这一过程,求最后剩下的序列的长度 分析 首先可 ...

  5. linux中jdk的安装与mysql 的安装

    1.linux安装jdk #先找到 安装包#cd /usr/java tar -zxvf jdk-8u31-linux-x64.tar.gz 2.安装选择要安装java的位置,如/usr/目录下,新建 ...

  6. laravel5.5缓存系统

    目录 1 Redis的配置 1.1 安装PRedis 1.2 配置 1.2.1 配置redis数据库 1.2.2 更改session的配置 1.2.3 更改cache配置 1.3 使用redis 2 ...

  7. SpringMVC 整合 kaptcha(验证码功能)

    一.添加依赖 <dependency> <groupId>com.github.penggle</groupId> <artifactId>kaptch ...

  8. Python 模块:random 随机数生成

    Python中的random模块用于生成随机数. 使用该模块之前需要 import random 几个常用的函数用法: 1.random.random 函数原型: random.random() 用于 ...

  9. selenium定位弹出菜单

    写selenium脚本,在浏览器定位各种弹出菜单时,有时用工具很难去取菜单的属性,下面说下如何去取: 点开firebug ,切换到“脚本”界面,首先在输入框输入单字母s,待弹出下拉列表后,单击左侧的插 ...

  10. 深入理解synchronize

    本文参考引用,本人整理个人理解.地址点击 1.实现原理 synchronized可以保证方法或者代码块在运行时,同一时刻只有一个方法可以进入到临界区,同时它还可以保证共享变量的内存可见性. 下面是一些 ...