题面

思路

我们首先考虑传统的链上LIS做法:保存每个长度的LIS末端的最小值,二分查找

那么这道题其实就只是搬到树上来做了而已

我们考虑一个节点,假设它的儿子已经处理完毕了

那么我们选择LIS最长的儿子进行继承,然后每次和其它儿子合并

合并的方法就是逐位取min值

合并完了以后再把当前节点二分一下加进去

记录的LIS,因为本题中的路径可以往根走也可以往叶子走,所以我们要记录从根开始的LIS和从叶子开始的LIS(其实就是从根开始的LDS),维护方法是一样的

然后对于答案的统计,有三种情况:

以当前节点为一端,向下递增

以当前节点为一端,向下递减

以当前子树中某一个点为一端,经过当前点,进入当前子树另一个点

前两种直接算就好了,第三种可以枚举LIS的长度,在LDS数组上面二分

合并的时候用启发式合并,这样总复杂度是$O(n\log^2 n)$

Code

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cassert>
#include<vector>
using namespace std;
inline int read(){
int re=0,flag=1;char ch=getchar();
while(!isdigit(ch)){
if(ch=='-') flag=-1;
ch=getchar();
}
while(isdigit(ch)) re=(re<<1)+(re<<3)+ch-'0',ch=getchar();
return re*flag;
}
int n,a[200010],dep[200010],cnte,ans=0;
int first[200010];
vector<int>f[200010],g[200010];
struct edge{
int to,next;
}e[400010];
inline void add(int u,int v){
e[++cnte]=(edge){v,first[u]};first[u]=cnte;
e[++cnte]=(edge){u,first[v]};first[v]=cnte;
}
bool anti(int l,int r){return l>r;}
void fg(int u,int v){
int i,pos,su=f[u].size(),sv=g[v].size();
if(su<sv){
for(i=0;i<su;i++){
pos=lower_bound(g[v].begin(),g[v].end(),f[u][i],anti)-g[v].begin();
ans=max(ans,i+1+pos);
}
}
else{
for(i=0;i<sv;i++){
pos=lower_bound(f[u].begin(),f[u].end(),g[v][i])-f[u].begin();
ans=max(ans,i+1+pos);
}
}
}
void only(int u,int v){
int l1,l2;
l1=lower_bound(f[u].begin(),f[u].end(),a[u])-f[u].begin();
l2=lower_bound(g[v].begin(),g[v].end(),a[u],anti)-g[v].begin();
ans=max(ans,l1+l2+1);
l1=lower_bound(f[v].begin(),f[v].end(),a[u])-f[v].begin();
l2=lower_bound(g[u].begin(),g[u].end(),a[u],anti)-g[u].begin();
ans=max(ans,l1+l2+1);
}
void merge(int u,int v){
int i,su,sv;
su=f[u].size();sv=f[v].size();
if(su>=sv) for(i=0;i<sv;i++) f[u][i]=min(f[u][i],f[v][i]);
else{
for(i=0;i<su;i++) f[v][i]=min(f[u][i],f[v][i]);
swap(f[u],f[v]);
}
su=g[u].size();sv=g[v].size();
if(su>=sv) for(i=0;i<sv;i++) g[u][i]=max(g[u][i],g[v][i]);
else{
for(i=0;i<su;i++) g[v][i]=max(g[u][i],g[v][i]);
swap(g[u],g[v]);
}
}
void join(int u){
int len,pos;
len=f[u].size();
pos=upper_bound(f[u].begin(),f[u].end(),a[u])-f[u].begin();
if(!len||!pos||a[u]>f[u][pos-1]){
if(pos==len) f[u].push_back(a[u]);
else f[u][pos]=a[u];
}
len=g[u].size();
pos=upper_bound(g[u].begin(),g[u].end(),a[u],anti)-g[u].begin();
if(!len||!pos||a[u]<g[u][pos-1]){
if(pos==len) g[u].push_back(a[u]);
else g[u][pos]=a[u];
}
}
void dfs(int u,int f){
int i,v;
for(i=first[u];~i;i=e[i].next){
v=e[i].to;if(v==f) continue;
dfs(v,u);
only(u,v);
fg(u,v);fg(v,u);
merge(u,v);
}
join(u);
}
int main(){
memset(first,-1,sizeof(first));
n=read();int i,t1,t2;
for(i=1;i<=n;i++) a[i]=read();
for(i=1;i<n;i++){
t1=read();t2=read();
add(t1,t2);
}
dfs(1,0);
printf("%d\n",ans);
}

银河战舰 [启发式合并+dp]的更多相关文章

  1. Codeforces 1455G - Forbidden Value(map 启发式合并+DP)

    Codeforces 题面传送门 & 洛谷题面传送门 首先这个 if 与 end 配对的结构显然形成一个树形结构,考虑把这棵树建出来,于是这个程序的结构就变为,对树进行一遍 DFS,到达某个节 ...

  2. ARC 086 E - Smuggling Marbles(dp + 启发式合并)

    题意 Sunke 有一棵 \(N + 1\) 个点的树,其中 \(0\) 为根,每个点上有 \(0\) 或 \(1\) 个石子, Sunke 会不停的进行如下操作直至整棵树没有石子 : 把 \(0\) ...

  3. [2016北京集训试题7]thr-[树形dp+树链剖分+启发式合并]

    Description Solution 神仙操作orz. 首先看数据范围,显然不可能是O(n2)的.(即绝对不是枚举那么简单的),我们考虑dp. 定义f(x,k)为以x为根的子树中与x距离为k的节点 ...

  4. AtCoder AGC007E Shik and Travel (二分、DP、启发式合并)

    题目链接 https://atcoder.jp/contests/agc007/tasks/agc007_e 题解 首先有个很朴素的想法是,二分答案\(mid\)后使用可行性DP, 设\(dp[u][ ...

  5. P5979 [PA2014]Druzyny dp 分治 线段树 分类讨论 启发式合并

    LINK:Druzyny 这题研究了一下午 终于搞懂了. \(n^2\)的dp很容易得到. 考虑优化.又有大于的限制又有小于的限制这个非常难处理. 不过可以得到在限制人数上界的情况下能转移到的最远端点 ...

  6. [多校 NOIP 联合模拟 20201130 T4] ZZH 的旅行(斜率优化dp,启发式合并,平衡树)

    题面 题目背景 因为出题人天天被 ZZH(Zou ZHen) 吊打,所以这场比赛的题目中出现了 ZZH . 简要题面 数据范围 题解 (笔者写两个log的平衡树和启发式合并卡过的,不足为奇) 首先,很 ...

  7. 2018.10.14 loj#516. DP 一般看规律(启发式合并)

    传送门 注意到一种颜色改了之后就不能改回去了. 因此可以启发式合并. 每次把小的合并给大的. 这样每个数最多被合并logloglog次. 如果维护一棵比较下标的平衡树的话,对于答案有贡献的就是每个数与 ...

  8. BZOJ4919 [Lydsy1706月赛]大根堆 【dp + 启发式合并】

    题目链接 BZOJ4919 题解 链上的\(LIS\)维护一个数组\(f[i]\)表示长度为\(i\)的\(LIS\)最小的结尾大小 我们可以用\(multiset\)来维护这个数组,子树互不影响,启 ...

  9. loj516 DP一般看规律(set启发式合并)

    题目: https://loj.ac/problem/516 分析: 每次将一个颜色更改为另一个颜色相当于将两个集合合并 然后对于答案的更新,一个点插入到一个集合中,那么可能更新答案的就是其前驱节点或 ...

随机推荐

  1. spring cloud 学习之服务消费者(rest+ribbon)

    学习自 http://blog.csdn.net/forezp/article/details/81040946 方志朋的博客 在微服务架构中,业务都会被拆分成一个独立的服务,服务与服务的通讯是基于h ...

  2. Cloudera Manager 安装 CDH5

    文档说明 本文是针对Linux CentOS6服务器与CDH5.15的安装手册. 关于CDH和ClouderaManager CDH(Cloudera's Distribution, includin ...

  3. springMVC入门二

    一.准备工作 参考springMVC入门一,搭建maven项目如下: 前台结构如下: 项目介绍:使用springMVC实现前后台数据交互,例如controller返回json,页面传入pojo 二.具 ...

  4. angular常见问题总结

    本文引自:https://www.cnblogs.com/zhoulujun/p/8881414.html 这篇是对angularJS的一些疑点回顾,是对目前angularJS开发的各种常见问题的整理 ...

  5. Javascript简单特效及摘要

    1.js中的Element对象 ** var input1=docuemnt.getElementById("input1"); //alert(input1.value); // ...

  6. 如何理解MVVM?

    随着前端页面越来越复杂,用户对于交互性要求也越来越高,MVVM模型应运而生. MVVM最早由微软提出来,它借鉴了桌面应用程序的MVC思想,在前端页面中,把Model用纯JavaScript对象表示,V ...

  7. 类的特殊方法"__call__"详解

    1. __call__ 当执行对象名+括号时, 会自动执行类中的"__call__"方法, 怎么用? class A: def __init__(self, name): self ...

  8. emplace_back

    c++11 的 list deque 和 vector 增加了emplace_back函数,相对于push_back函数,它减少了一次类的构造,因此效率更高,推荐使用. #include <li ...

  9. 7-1 寻找大富翁 PTA 堆排序

    7-1 寻找大富翁 (25 分) 胡润研究院的调查显示,截至2017年底,中国个人资产超过1亿元的高净值人群达15万人.假设给出N个人的个人资产值,请快速找出资产排前M位的大富翁. 输入格式: 输入首 ...

  10. Poweroj:2425-跳台阶(经典递推)

    题目链接:https://www.oj.swust.edu.cn/problem/show/2425 跳台阶 Edit Manage Data Rejudge Time Limit: 1000 MS ...