银河战舰 [启发式合并+dp]
题面
思路
我们首先考虑传统的链上LIS做法:保存每个长度的LIS末端的最小值,二分查找
那么这道题其实就只是搬到树上来做了而已
我们考虑一个节点,假设它的儿子已经处理完毕了
那么我们选择LIS最长的儿子进行继承,然后每次和其它儿子合并
合并的方法就是逐位取min值
合并完了以后再把当前节点二分一下加进去
记录的LIS,因为本题中的路径可以往根走也可以往叶子走,所以我们要记录从根开始的LIS和从叶子开始的LIS(其实就是从根开始的LDS),维护方法是一样的
然后对于答案的统计,有三种情况:
以当前节点为一端,向下递增
以当前节点为一端,向下递减
以当前子树中某一个点为一端,经过当前点,进入当前子树另一个点
前两种直接算就好了,第三种可以枚举LIS的长度,在LDS数组上面二分
合并的时候用启发式合并,这样总复杂度是$O(n\log^2 n)$
Code
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cassert>
#include<vector>
using namespace std;
inline int read(){
int re=0,flag=1;char ch=getchar();
while(!isdigit(ch)){
if(ch=='-') flag=-1;
ch=getchar();
}
while(isdigit(ch)) re=(re<<1)+(re<<3)+ch-'0',ch=getchar();
return re*flag;
}
int n,a[200010],dep[200010],cnte,ans=0;
int first[200010];
vector<int>f[200010],g[200010];
struct edge{
int to,next;
}e[400010];
inline void add(int u,int v){
e[++cnte]=(edge){v,first[u]};first[u]=cnte;
e[++cnte]=(edge){u,first[v]};first[v]=cnte;
}
bool anti(int l,int r){return l>r;}
void fg(int u,int v){
int i,pos,su=f[u].size(),sv=g[v].size();
if(su<sv){
for(i=0;i<su;i++){
pos=lower_bound(g[v].begin(),g[v].end(),f[u][i],anti)-g[v].begin();
ans=max(ans,i+1+pos);
}
}
else{
for(i=0;i<sv;i++){
pos=lower_bound(f[u].begin(),f[u].end(),g[v][i])-f[u].begin();
ans=max(ans,i+1+pos);
}
}
}
void only(int u,int v){
int l1,l2;
l1=lower_bound(f[u].begin(),f[u].end(),a[u])-f[u].begin();
l2=lower_bound(g[v].begin(),g[v].end(),a[u],anti)-g[v].begin();
ans=max(ans,l1+l2+1);
l1=lower_bound(f[v].begin(),f[v].end(),a[u])-f[v].begin();
l2=lower_bound(g[u].begin(),g[u].end(),a[u],anti)-g[u].begin();
ans=max(ans,l1+l2+1);
}
void merge(int u,int v){
int i,su,sv;
su=f[u].size();sv=f[v].size();
if(su>=sv) for(i=0;i<sv;i++) f[u][i]=min(f[u][i],f[v][i]);
else{
for(i=0;i<su;i++) f[v][i]=min(f[u][i],f[v][i]);
swap(f[u],f[v]);
}
su=g[u].size();sv=g[v].size();
if(su>=sv) for(i=0;i<sv;i++) g[u][i]=max(g[u][i],g[v][i]);
else{
for(i=0;i<su;i++) g[v][i]=max(g[u][i],g[v][i]);
swap(g[u],g[v]);
}
}
void join(int u){
int len,pos;
len=f[u].size();
pos=upper_bound(f[u].begin(),f[u].end(),a[u])-f[u].begin();
if(!len||!pos||a[u]>f[u][pos-1]){
if(pos==len) f[u].push_back(a[u]);
else f[u][pos]=a[u];
}
len=g[u].size();
pos=upper_bound(g[u].begin(),g[u].end(),a[u],anti)-g[u].begin();
if(!len||!pos||a[u]<g[u][pos-1]){
if(pos==len) g[u].push_back(a[u]);
else g[u][pos]=a[u];
}
}
void dfs(int u,int f){
int i,v;
for(i=first[u];~i;i=e[i].next){
v=e[i].to;if(v==f) continue;
dfs(v,u);
only(u,v);
fg(u,v);fg(v,u);
merge(u,v);
}
join(u);
}
int main(){
memset(first,-1,sizeof(first));
n=read();int i,t1,t2;
for(i=1;i<=n;i++) a[i]=read();
for(i=1;i<n;i++){
t1=read();t2=read();
add(t1,t2);
}
dfs(1,0);
printf("%d\n",ans);
}
银河战舰 [启发式合并+dp]的更多相关文章
- Codeforces 1455G - Forbidden Value(map 启发式合并+DP)
Codeforces 题面传送门 & 洛谷题面传送门 首先这个 if 与 end 配对的结构显然形成一个树形结构,考虑把这棵树建出来,于是这个程序的结构就变为,对树进行一遍 DFS,到达某个节 ...
- ARC 086 E - Smuggling Marbles(dp + 启发式合并)
题意 Sunke 有一棵 \(N + 1\) 个点的树,其中 \(0\) 为根,每个点上有 \(0\) 或 \(1\) 个石子, Sunke 会不停的进行如下操作直至整棵树没有石子 : 把 \(0\) ...
- [2016北京集训试题7]thr-[树形dp+树链剖分+启发式合并]
Description Solution 神仙操作orz. 首先看数据范围,显然不可能是O(n2)的.(即绝对不是枚举那么简单的),我们考虑dp. 定义f(x,k)为以x为根的子树中与x距离为k的节点 ...
- AtCoder AGC007E Shik and Travel (二分、DP、启发式合并)
题目链接 https://atcoder.jp/contests/agc007/tasks/agc007_e 题解 首先有个很朴素的想法是,二分答案\(mid\)后使用可行性DP, 设\(dp[u][ ...
- P5979 [PA2014]Druzyny dp 分治 线段树 分类讨论 启发式合并
LINK:Druzyny 这题研究了一下午 终于搞懂了. \(n^2\)的dp很容易得到. 考虑优化.又有大于的限制又有小于的限制这个非常难处理. 不过可以得到在限制人数上界的情况下能转移到的最远端点 ...
- [多校 NOIP 联合模拟 20201130 T4] ZZH 的旅行(斜率优化dp,启发式合并,平衡树)
题面 题目背景 因为出题人天天被 ZZH(Zou ZHen) 吊打,所以这场比赛的题目中出现了 ZZH . 简要题面 数据范围 题解 (笔者写两个log的平衡树和启发式合并卡过的,不足为奇) 首先,很 ...
- 2018.10.14 loj#516. DP 一般看规律(启发式合并)
传送门 注意到一种颜色改了之后就不能改回去了. 因此可以启发式合并. 每次把小的合并给大的. 这样每个数最多被合并logloglog次. 如果维护一棵比较下标的平衡树的话,对于答案有贡献的就是每个数与 ...
- BZOJ4919 [Lydsy1706月赛]大根堆 【dp + 启发式合并】
题目链接 BZOJ4919 题解 链上的\(LIS\)维护一个数组\(f[i]\)表示长度为\(i\)的\(LIS\)最小的结尾大小 我们可以用\(multiset\)来维护这个数组,子树互不影响,启 ...
- loj516 DP一般看规律(set启发式合并)
题目: https://loj.ac/problem/516 分析: 每次将一个颜色更改为另一个颜色相当于将两个集合合并 然后对于答案的更新,一个点插入到一个集合中,那么可能更新答案的就是其前驱节点或 ...
随机推荐
- 关于ACL中通配符掩码(反掩码)认识
ACL(Access Control List) 访问控制列表在作为数据包的过滤器以及在对指定的某种类型的数据包的优先级,起到了对某些数据包的优先级起到了限制流量的作用,减少了网络的拥塞. ...
- margin与padding大比拼
用margin还是用padding这个问题相信是每个学css的人都想要去深入了解的. CSS边距属性定义元素周围的空间.通过使用单独的属性,可以对上.右.下.左的外边距进行设置.也可以使用简写的外边距 ...
- 【动态规划 floyd】SPOJ ACPC13
为什么rzz会把这题放在NOI模拟赛的T2? 题目大意 有一张$n$个点$m$条边的有向图,每条边有权值$w_i$. 定义一个任务$(a_i,b_i,c_i)$是如下一条路径: 最多经过$c_i$条边 ...
- JS下载文件常用的方式
下载附件(image,doc,docx, excel,zip,pdf),应该是实际工作中经常遇到一个问题:这里使用过几种方式分享出来仅供参考; 初次写可能存在问题,有问题望指出 主要了解的几个知识 ...
- 关于IT人的一些消遣区
https://www.csdn.net/http://www.51cto.com/http://bestcbooks.com/http://www.jobbole.com/http://www.co ...
- 《Redis设计与实现》- RDB持久化
Redis RDB持久化功能可以将Redis内存中的数据库状态保存到磁盘里面,避免数据意外丢失. 1. 手动生成 RDB 文件 有两个Redis命令可以用于生成RDB文件: SAVE,该命令会阻塞Re ...
- 基于THINKPHP+layui+Ajax无刷新实现图片上传预览
<fieldset class="layui-elem-field" style="width:500px;margin:50px 0 0 300px;" ...
- Ball CodeForces - 12D
传送门 N ladies attend the ball in the King's palace. Every lady can be described with three values: be ...
- 笔记-docker-1
笔记-docker-1 1. 简介 1.1. 什么是Docker? Docker 是世界领先的软件容器平台.开发人员利用 Docker 可以消除协作编码时“在我的机器上可正常工作”的问 ...
- Diycode开源项目 SitesListFragment分析
1.效果预览 1.1.网站列表实际界面 1.2.注意这个界面没有继承SimpleRefreshRecycleFragment 前面的话题和新闻继承了SimpleRefreshRecyclerFragm ...