原文地址:http://www.cnblogs.com/GXZlegend/p/6797748.html


题目描述

为了得到书法大家的真传,小E同学下定决心去拜访住在魔法森林中的隐士。魔法森林可以被看成一个包含个N节点M条边的无向图,节点标号为1..N,边标号为1..M。初始时小E同学在号节点1,隐士则住在号节点N。小E需要通过这一片魔法森林,才能够拜访到隐士。

魔法森林中居住了一些妖怪。每当有人经过一条边的时候,这条边上的妖怪就会对其发起攻击。幸运的是,在号节点住着两种守护精灵:A型守护精灵与B型守护精灵。小E可以借助它们的力量,达到自己的目的。

只要小E带上足够多的守护精灵,妖怪们就不会发起攻击了。具体来说,无向图中的每一条边Ei包含两个权值Ai与Bi。若身上携带的A型守护精灵个数不少于Ai,且B型守护精灵个数不少于Bi,这条边上的妖怪就不会对通过这条边的人发起攻击。当且仅当通过这片魔法森林的过程中没有任意一条边的妖怪向小E发起攻击,他才能成功找到隐士。

由于携带守护精灵是一件非常麻烦的事,小E想要知道,要能够成功拜访到隐士,最少需要携带守护精灵的总个数。守护精灵的总个数为A型守护精灵的个数与B型守护精灵的个数之和。

输入

第1行包含两个整数N,M,表示无向图共有N个节点,M条边。 接下来M行,第行包含4个正整数Xi,Yi,Ai,Bi,描述第i条无向边。其中Xi与Yi为该边两个端点的标号,Ai与Bi的含义如题所述。 注意数据中可能包含重边与自环。

输出

输出一行一个整数:如果小E可以成功拜访到隐士,输出小E最少需要携带的守护精灵的总个数;如果无论如何小E都无法拜访到隐士,输出“-1”(不含引号)。

样例输入

【输入样例1】
4 5
1 2 19 1
2 3 8 12
2 4 12 15
1 3 17 8
3 4 1 17
【输入样例2】
3 1
1 2 1 1

样例输出

【输出样例1】
32
【输出样例2】
-1


题解

Kruskal+LCT

题目中给定的二维,可以先排序,按照第一维递增顺序加边权为第二维的边,不断维护最小生成树(或最小生成森林)。

对于每条要加的边,判断它两个端点是否连通。

不连通则直接加边,连通则找出路径上最大边权,再比较当前边的第二维和最大边权的大小决定是否加边。

这可以用LCT来维护。

然而LCT很难处理边权,于是可以换一种方法,link(x,y)改为link(x,tmp),link(y,tmp),并将tmp的点权赋为x到y的边权。

加边以后再判断点1和点n是否连通,并计算答案。

#include <cstdio>
#include <algorithm>
#define N 150010
#define lson c[0][x]
#define rson c[1][x]
using namespace std;
struct data
{
int x , y , b , d;
}a[N];
int fa[N] , c[2][N] , w[N] , maxp[N] , rev[N];
bool cmp(data a , data e)
{
return a.b < e.b;
}
void pushup(int x)
{
maxp[x] = x;
if(w[maxp[x]] < w[maxp[lson]]) maxp[x] = maxp[lson];
if(w[maxp[x]] < w[maxp[rson]]) maxp[x] = maxp[rson];
}
void pushdown(int x)
{
if(rev[x])
{
swap(c[0][lson] , c[1][lson]);
swap(c[0][rson] , c[1][rson]);
rev[lson] ^= 1 , rev[rson] ^= 1;
rev[x] = 0;
}
}
bool isroot(int x)
{
return c[0][fa[x]] != x && c[1][fa[x]] != x;
}
void update(int x)
{
if(!isroot(x)) update(fa[x]);
pushdown(x);
}
void rotate(int x)
{
int y = fa[x] , z = fa[y] , l = (c[1][y] == x) , r = l ^ 1;
if(!isroot(y)) c[c[1][z] == y][z] = x;
fa[x] = z , fa[y] = x , fa[c[r][x]] = y , c[l][y] = c[r][x] , c[r][x] = y;
pushup(y) , pushup(x);
}
void splay(int x)
{
update(x);
while(!isroot(x))
{
int y = fa[x] , z = fa[y];
if(!isroot(y))
{
if((c[0][y] == x) ^ (c[0][z] == y)) rotate(x);
else rotate(y);
}
rotate(x);
}
}
void access(int x)
{
int t = 0;
while(x) splay(x) , rson = t , pushup(x) , t = x , x = fa[x];
}
int find(int x)
{
access(x) , splay(x);
while(lson) pushdown(x) , x = lson;
return x;
}
void makeroot(int x)
{
access(x) , splay(x);
swap(lson , rson) , rev[x] ^= 1;
}
void link(int x , int y)
{
makeroot(x) , fa[x] = y;
}
void cut(int x , int y)
{
makeroot(x) , access(y) , splay(y) , c[0][y] = fa[x] = 0 , pushup(y);
}
void split(int x , int y)
{
makeroot(y) , access(x) , splay(x);
}
int main()
{
int n , m , i , ans = 0x7fffffff , t;
scanf("%d%d" , &n , &m);
for(i = 1 ; i <= n ; i ++ ) maxp[i] = i;
for(i = 1 ; i <= m ; i ++ ) scanf("%d%d%d%d" , &a[i].x , &a[i].y , &a[i].b , &a[i].d);
sort(a + 1 , a + m + 1 , cmp);
for(i = 1 ; i <= m ; i ++ )
{
if(find(a[i].x) != find(a[i].y)) w[n + i] = a[i].d , maxp[n + i] = n + i , link(a[i].x , n + i) , link(a[i].y , n + i);
else
{
split(a[i].x , a[i].y) , t = maxp[a[i].x];
if(w[t] > a[i].d) cut(t , a[t - n].x) , cut(t , a[t - n].y) , w[n + i] = a[i].d , maxp[n + i] = n + i , link(a[i].x , n + i) , link(a[i].y , n + i);
}
if(find(1) == find(n)) split(1 , n) , ans = min(ans , a[i].b + w[maxp[1]]);
}
printf("%d\n" , ans == 0x7fffffff ? -1 : ans);
return 0;
}

【bzoj3669】[Noi2014]魔法森林 Kruskal+LCT的更多相关文章

  1. BZOJ3669[Noi2014]魔法森林——kruskal+LCT

    题目描述 为了得到书法大家的真传,小E同学下定决心去拜访住在魔法森林中的隐士.魔法森林可以被看成一个包含个N节点M条边的无向图,节点标号为1..N,边标号为1..M.初始时小E同学在号节点1,隐士则住 ...

  2. bzoj3669: [Noi2014]魔法森林 lct版

    先上题目 bzoj3669: [Noi2014]魔法森林 这道题首先每一条边都有一个a,b 我们按a从小到大排序 每次将一条路劲入队 当然这道题权在边上 所以我们将边化为点去连接他的两个端点 当然某两 ...

  3. P2387 [NOI2014]魔法森林(LCT)

    P2387 [NOI2014]魔法森林 LCT边权维护经典题 咋维护呢?边化为点,边权变点权. 本题中我们把边对关键字A进行排序,动态维护关键字B的最小生成树 加边后出现环咋办? splay维护最大边 ...

  4. BZOJ3669: [Noi2014]魔法森林(瓶颈生成树 LCT)

    Time Limit: 30 Sec  Memory Limit: 512 MBSubmit: 3558  Solved: 2283[Submit][Status][Discuss] Descript ...

  5. [bzoj3669][Noi2014]魔法森林_LCT_并查集

    魔法森林 bzoj-3669 Noi-2014 题目大意:说不明白题意系列++……题目链接 注释:略. 想法:如果只有1个参量的话spfa.dij什么的都上来了. 两个参量的话我们考虑,想将所有的边按 ...

  6. 【BZOJ】3669: [Noi2014]魔法森林(lct+特殊的技巧)

    http://www.lydsy.com/JudgeOnline/problem.php?id=3669 首先看到题目应该可以得到我们要最小化 min{ max{a(u, v)} + max{b(u, ...

  7. 3669. [NOI2014]魔法森林【LCT 或 SPFA动态加边】

    Description 为了得到书法大家的真传,小E同学下定决心去拜访住在魔法森林中的隐士.魔法森林可以被看成一个包含个N节点M条边的无向图,节点标号为1..N,边标号为1..M.初始时小E同学在号节 ...

  8. 洛谷P2387 [NOI2014]魔法森林(lct维护最小生成树)

    题目描述 为了得到书法大家的真传,小 E 同学下定决心去拜访住在魔法森林中的隐 士.魔法森林可以被看成一个包含 n 个节点 m 条边的无向图,节点标号为 1,2,3,…,n,边标号为 1,2,3,…, ...

  9. BZOJ3669 [Noi2014]魔法森林(SPFA+动态加边)

    本文版权归ljh2000和博客园共有,欢迎转载,但须保留此声明,并给出原文链接,谢谢合作. 本文作者:ljh2000 作者博客:http://www.cnblogs.com/ljh2000-jump/ ...

随机推荐

  1. 协议:Http Https TCP/IP

    Http协议 1.1 Http概述 HTTP(hypertext transport protocol),即超文本传输协议.这个协议详细规定了浏览器和万维网服务器之间互相通信的规则.HTTP就是一个通 ...

  2. 通过增量备份恢复来处理Oracle DG 复制GAP

    1.确定增备scn范围,通过alert日志获取gap日志序列GAP - thread 1 sequence 109631-117170 2.根据序列获取增备起点SCN提示最小gap序列为109631, ...

  3. 深入浅出:promise的各种用法

    https://mp.weixin.qq.com/s?__biz=MzAwNTAzMjcxNg==&mid=2651425195&idx=1&sn=eed6bea35323c7 ...

  4. elasticsearch-dsl聚合-2

    接续上篇,本篇介绍elasticsearch聚合查询,使用python库elasticsearch-dsl进行聚合查询操作. 条形图 聚合有一个令人激动的特性就是能够十分容易地将数据转换成图表和图形. ...

  5. rsync + git发布项目

    前言: 更新项目的时候需要将更改的文件一一上传,这样比较麻烦,用版本控制器git +rsync 搭建一个发布服务器,以后发布文件非常方便 首先说下,我这边的更新流程,本地写完之后,git push 到 ...

  6. python基础回顾笔记

    1.知道了什么是编程语言 2.知道了python.C#.Java都是语言的种类 3.python:有很多种 cpython.pypy.jpython... 4.python的执行方式有两种: 解释器 ...

  7. 使用windows api安装windows服务程序(C#)

    3个步骤: 1.安装器代码编写 2.安装器工具类编写 1)安装.启动服务) 2)卸载服务 3.windows服务程序编写(参考:多线程.方便扩展的Windows服务程序框架) 4.代码下载,在文末(注 ...

  8. JZOJ 3521. 道路覆盖

    Description ar把一段凹凸不平的路分成了高度不同的N段,并用H[i]表示第i段高度.现在Tar一共有n种泥土可用,它们都能覆盖给定的连续的k个部分. 对于第i种泥土,它的价格为C[i],可 ...

  9. 守护进程,进程安全,IPC进程间通讯,生产者消费者模型

    1.守护进程(了解)2.进程安全(*****) 互斥锁 抢票案例3.IPC进程间通讯 manager queue(*****)4.生产者消费者模型 守护进程 指的也是一个进程,可以守护着另一个进程 一 ...

  10. 12-optionBinding

    1-创建一个空的dotnet mvc网站 2- 创建appsettings.json文件, 这文件会默认被绑定 { "ClassNo": "1", " ...