python——进程、线程、协程
Python线程
Threading用于提供线程相关的操作,线程是应用程序中工作的最小单元。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
|
#!/usr/bin/env python # -*- coding:utf-8 -*- import threading import time def show(arg): time.sleep( 1 ) print 'thread' + str (arg) for i in range ( 10 ): t = threading.Thread(target = show, args = (i,)) t.start() print 'main thread stop' |
上述代码创建了10个“前台”线程,然后控制器就交给了CPU,CPU根据指定算法进行调度,分片执行指令。
更多方法:
- start 线程准备就绪,等待CPU调度
- setName 为线程设置名称
- getName 获取线程名称
- setDaemon 设置为后台线程或前台线程(默认)
如果是后台线程,主线程执行过程中,后台线程也在进行,主线程执行完毕后,后台线程不论成功与否,均停止
如果是前台线程,主线程执行过程中,前台线程也在进行,主线程执行完毕后,等待前台线程也执行完成后,程序停止 - join 逐个执行每个线程,执行完毕后继续往下执行,该方法使得多线程变得无意义
- run 线程被cpu调度后自动执行线程对象的run方法
import threading
import time class MyThread(threading.Thread):
def __init__(self,num):
threading.Thread.__init__(self)
self.num = num def run(self):#定义每个线程要运行的函数 print("running on number:%s" %self.num) time.sleep(3) if __name__ == '__main__': t1 = MyThread(1)
t2 = MyThread(2)
t1.start()
t2.start()
自定义线程类
线程锁(Lock、RLock【推荐】)
由于线程之间是进行随机调度,并且每个线程可能只执行n条执行之后,当多个线程同时修改同一条数据时可能会出现脏数据,所以,出现了线程锁 - 同一时刻允许一个线程执行操作。
#!/usr/bin/env python
# -*- coding:utf-8 -*-
import threading
import time gl_num = 0 def show(arg):
global gl_num
time.sleep(1)
gl_num +=1
print gl_num for i in range(10):
t = threading.Thread(target=show, args=(i,))
t.start() print 'main thread stop'
未使用锁
#!/usr/bin/env python
#coding:utf-8 import threading
import time gl_num = 0 lock = threading.RLock() def Func():
lock.acquire()
global gl_num
gl_num +=1
time.sleep(1)
print gl_num
lock.release() for i in range(10):
t = threading.Thread(target=Func)
t.start()
信号量(Semaphore)
互斥锁 同时只允许一个线程更改数据,而Semaphore是同时允许一定数量的线程更改数据 ,比如厕所有3个坑,那最多只允许3个人上厕所,后面的人只能等里面有人出来了才能再进去。
import threading,time def run(n):
semaphore.acquire()
time.sleep(1)
print("run the thread: %s" %n)
semaphore.release() if __name__ == '__main__': num= 0
semaphore = threading.BoundedSemaphore(5) #最多允许5个线程同时运行
for i in range(20):
t = threading.Thread(target=run,args=(i,))
t.start()
GIL VS Lock
机智的同学可能会问到这个问题,就是既然你之前说过了,Python已经有一个GIL来保证同一时间只能有一个线程来执行了,为什么这里还需要lock? 注意啦,这里的lock是用户级的lock,跟那个GIL没关系 ,具体我们通过下图来看一下+配合我现场讲给大家,就明白了。
那你又问了, 既然用户程序已经自己有锁了,那为什么C python还需要GIL呢?加入GIL主要的原因是为了降低程序的开发的复杂度,比如现在的你写python不需要关心内存回收的问题,因为Python解释器帮你自动定期进行内存回收,你可以理解为python解释器里有一个独立的线程,每过一段时间它起wake up做一次全局轮询看看哪些内存数据是可以被清空的,此时你自己的程序 里的线程和 py解释器自己的线程是并发运行的,假设你的线程删除了一个变量,py解释器的垃圾回收线程在清空这个变量的过程中的clearing时刻,可能一个其它线程正好又重新给这个还没来及得清空的内存空间赋值了,结果就有可能新赋值的数据被删除了,为了解决类似的问题,python解释器简单粗暴的加了锁,即当一个线程运行时,其它人都不能动,这样就解决了上述的问题, 这可以说是Python早期版本的遗留问题。
事件(event)
python线程的事件用于主线程控制其他线程的执行,事件主要提供了三个方法 set、wait、clear。
事件处理的机制:全局定义了一个“Flag”,如果“Flag”值为 False,那么当程序执行 event.wait 方法时就会阻塞,如果“Flag”值为True,那么event.wait 方法时便不再阻塞。
- clear:将“Flag”设置为False
- set:将“Flag”设置为True
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
|
#!/usr/bin/env python # -*- coding:utf-8 -*- import threading def do(event): print 'start' event.wait() print 'execute' event_obj = threading.Event() for i in range ( 10 ): t = threading.Thread(target = do, args = (event_obj,)) t.start() event_obj.clear() inp = raw_input ( 'input:' ) if inp = = 'true' : event_obj. set () |
条件(Condition)
使得线程等待,只有满足某条件时,才释放n个线程
import threading def run(n):
con.acquire()
con.wait()
print("run the thread: %s" %n)
con.release() if __name__ == '__main__': con = threading.Condition()
for i in range(10):
t = threading.Thread(target=run, args=(i,))
t.start() while True:
inp = input('>>>')
if inp == 'q':
break
con.acquire()
con.notify(int(inp))
con.release()
def condition_func(): ret = False
inp = input('>>>')
if inp == '':
ret = True return ret def run(n):
con.acquire()
con.wait_for(condition_func)
print("run the thread: %s" %n)
con.release() if __name__ == '__main__': con = threading.Condition()
for i in range(10):
t = threading.Thread(target=run, args=(i,))
t.start()
Timer
定时器,指定n秒后执行某操作
1
2
3
4
5
6
7
8
|
from threading import Timer def hello(): print( "hello, world" ) t = Timer(1, hello) t.start() # after 1 seconds, "hello, world" will be printed |
线程池(不内置)
#!/usr/bin/env python
# -*- coding:utf-8 -*-
import Queue
import threading class ThreadPool(object): def __init__(self, max_num=20):
self.queue = Queue.Queue(max_num)
for i in xrange(max_num):
self.queue.put(threading.Thread) def get_thread(self):
return self.queue.get() def add_thread(self):
self.queue.put(threading.Thread) """
pool = ThreadPool(10) def func(arg, p):
print arg
import time
time.sleep(2)
p.add_thread() for i in xrange(30):
thread = pool.get_thread()
t = thread(target=func, args=(i, pool))
t.start()
"""
Low版本
#!/usr/bin/env python
# -*- coding:utf-8 -*- import queue
import threading
import contextlib
import time StopEvent = object() class ThreadPool(object): def __init__(self, max_num, max_task_num = None):
if max_task_num:
self.q = queue.Queue(max_task_num)
else:
self.q = queue.Queue()
self.max_num = max_num
self.cancel = False
self.terminal = False
self.generate_list = []
self.free_list = [] def run(self, func, args, callback=None):
"""
线程池执行一个任务
:param func: 任务函数
:param args: 任务函数所需参数
:param callback: 任务执行失败或成功后执行的回调函数,回调函数有两个参数1、任务函数执行状态;2、任务函数返回值(默认为None,即:不执行回调函数)
:return: 如果线程池已经终止,则返回True否则None
"""
if self.cancel:
return
if len(self.free_list) == 0 and len(self.generate_list) < self.max_num:
self.generate_thread()
w = (func, args, callback,)
self.q.put(w) def generate_thread(self):
"""
创建一个线程
"""
t = threading.Thread(target=self.call)
t.start() def call(self):
"""
循环去获取任务函数并执行任务函数
"""
current_thread = threading.currentThread()
self.generate_list.append(current_thread) event = self.q.get()
while event != StopEvent: func, arguments, callback = event
try:
result = func(*arguments)
success = True
except Exception as e:
success = False
result = None if callback is not None:
try:
callback(success, result)
except Exception as e:
pass with self.worker_state(self.free_list, current_thread):
if self.terminal:
event = StopEvent
else:
event = self.q.get()
else: self.generate_list.remove(current_thread) def close(self):
"""
执行完所有的任务后,所有线程停止
"""
self.cancel = True
full_size = len(self.generate_list)
while full_size:
self.q.put(StopEvent)
full_size -= 1 def terminate(self):
"""
无论是否还有任务,终止线程
"""
self.terminal = True while self.generate_list:
self.q.put(StopEvent) self.q.queue.clear() @contextlib.contextmanager
def worker_state(self, state_list, worker_thread):
"""
用于记录线程中正在等待的线程数
"""
state_list.append(worker_thread)
try:
yield
finally:
state_list.remove(worker_thread) # How to use pool = ThreadPool(5) def callback(status, result):
# status, execute action status
# result, execute action return value
pass def action(i):
print(i) for i in range(30):
ret = pool.run(action, (i,), callback) time.sleep(5)
print(len(pool.generate_list), len(pool.free_list))
print(len(pool.generate_list), len(pool.free_list))
# pool.close()
# pool.terminate()
高大上版本
更多参见:twisted.python.threadpool
上下文管理:https://docs.python.org/2/library/contextlib.html
from contextlib import contextmanager @contextmanager
def myopen(file_path, mode):
# 第一步执行
f = open(file_path,mode, encoding='utf-8')
try:
# f 即是下面的 file_obj 句柄
yield f
finally:
# 第三步执行
f.close() with myopen('index.html','r') as file_obj:
# 第二步执行
print(file_obj.readline())
Python 进程
1
2
3
4
5
6
7
8
9
10
|
from multiprocessing import Process import threading import time def foo(i): print 'say hi' ,i for i in range ( 10 ): p = Process(target = foo,args = (i,)) p.start() |
注意:由于进程之间的数据需要各自持有一份,所以创建进程需要的非常大的开销。
进程数据共享
进程各自持有一份数据,默认无法共享数据
#!/usr/bin/env python
#coding:utf-8 from multiprocessing import Process
from multiprocessing import Manager import time li = [] def foo(i):
li.append(i)
print 'say hi',li for i in range(10):
p = Process(target=foo,args=(i,))
p.start() print 'ending',li
进程间默认无法数据共享
#方法一,Array
from multiprocessing import Process,Array
temp = Array('i', [11,22,33,44]) def Foo(i):
temp[i] = 100+i
for item in temp:
print i,'----->',item for i in range(2):
p = Process(target=Foo,args=(i,))
p.start() #方法二:manage.dict()共享数据
from multiprocessing import Process,Manager manage = Manager()
dic = manage.dict() def Foo(i):
dic[i] = 100+i
print dic.values() for i in range(2):
p = Process(target=Foo,args=(i,))
p.start()
p.join() #方法三:Queue共享数据
from multiprocessing import Process, Queue def f(i,q):
print(i,q.get()) if __name__ == '__main__':
q = Queue() q.put("h1")
q.put("h2")
q.put("h3") for i in range(10):
p = Process(target=f, args=(i,q,))
p.start()
当创建进程时(非使用时),共享数据会被拿到子进程中,当进程中执行完毕后,再赋值给原值。
#!/usr/bin/env python
# -*- coding:utf-8 -*- from multiprocessing import Process, Array, RLock def Foo(lock,temp,i):
"""
将第0个数加100
"""
lock.acquire()
temp[0] = 100+i
for item in temp:
print i,'----->',item
lock.release() lock = RLock()
temp = Array('i', [11, 22, 33, 44]) for i in range(20):
p = Process(target=Foo,args=(lock,temp,i,))
p.start()
进程锁实例
#!/usr/bin/env python
# -*- coding:utf-8 -*-
from multiprocessing import Process,Pool
import time def Foo(i):
time.sleep(2)
return i+100 def Bar(arg):
print arg pool = Pool(5)
#排队执行,内带join
#print pool.apply(Foo,(1,)) #并发执行,主进程不等待子进程(daemon=True),可以设置回调函数
#print pool.apply_async(func =Foo, args=(1,)).get() for i in range(10):
pool.apply_async(func=Foo, args=(i,),callback=Bar) print 'end'
pool.close() #等待线程池全部执行完毕后关闭线程池
pool.terminate() # 立即关闭线程池里面的所有线程
#进程池中进程执行完毕后再关闭,必须要先执行close或者是terminate函数
pool.join()
协程
线程和进程的操作是由程序触发系统接口,最后的执行者是系统;协程的操作则是程序员。
协程存在的意义:对于多线程应用,CPU通过切片的方式来切换线程间的执行,线程切换时需要耗时(保存状态,下次继续)。协程,则只使用一个线程,在一个线程中规定某个代码块执行顺序。
协程的适用场景:当程序中存在大量不需要CPU的操作时(IO),适用于协程;
greenlet
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
|
#!/usr/bin/env python # -*- coding:utf-8 -*- from greenlet import greenlet def test1(): print 12 gr2.switch() print 34 gr2.switch() def test2(): print 56 gr1.switch() print 78 gr1 = greenlet(test1) gr2 = greenlet(test2) gr1.switch() |
gevent
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
|
import gevent def foo(): print ( 'Running in foo' ) gevent.sleep( 0 ) print ( 'Explicit context switch to foo again' ) def bar(): print ( 'Explicit context to bar' ) gevent.sleep( 0 ) print ( 'Implicit context switch back to bar' ) gevent.joinall([ gevent.spawn(foo), gevent.spawn(bar), ]) |
遇到IO操作自动切换:
from gevent import monkey; monkey.patch_all()
import gevent
import urllib2 def f(url):
print('GET: %s' % url)
resp = urllib2.urlopen(url)
data = resp.read()
print('%d bytes received from %s.' % (len(data), url)) gevent.joinall([
gevent.spawn(f, 'https://www.python.org/'),
gevent.spawn(f, 'https://www.yahoo.com/'),
gevent.spawn(f, 'https://github.com/'),
])
事件(event)
python线程的事件用于主线程控制其他线程的执行,事件主要提供了三个方法 set、wait、clear。
事件处理的机制:全局定义了一个“Flag”,如果“Flag”值为 False,那么当程序执行 event.wait 方法时就会阻塞,如果“Flag”值为True,那么event.wait 方法时便不再阻塞。
- clear:将“Flag”设置为False
- set:将“Flag”设置为True
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
|
#!/usr/bin/env python # -*- coding:utf-8 -*- import threading def do(event): print 'start' event.wait() print 'execute' event_obj = threading.Event() for i in range ( 10 ): t = threading.Thread(target = do, args = (event_obj,)) t.start() event_obj.clear() inp = raw_input ( 'input:' ) if inp = = 'true' : event_obj. set () |
条件(Condition)
使得线程等待,只有满足某条件时,才释放n个线程
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
|
import threading def run(n): con.acquire() con.wait() print( "run the thread: %s" %n) con.release() if __name__ == '__main__' : con = threading.Condition() for i in range(10): t = threading.Thread(target=run, args=(i,)) t.start() while True: inp = input( '>>>' ) if inp == 'q' : break con.acquire() con.notify(int(inp)) con.release() |
python——进程、线程、协程的更多相关文章
- Python 进程线程协程 GIL 闭包 与高阶函数(五)
Python 进程线程协程 GIL 闭包 与高阶函数(五) 1 GIL线程全局锁 线程全局锁(Global Interpreter Lock),即Python为了保证线程安全而采取的独立线程运行的 ...
- python -- 进程线程协程专题
进程专栏 multiprocessing 高级模块 要让Python程序实现多进程(multiprocessing),我们先了解操作系统的相关知识. Unix/Linux操作系统提供了一个fork() ...
- python 进程 线程 协程
并发与并行:并行是指两个或者多个事件在同一时刻发生:而并发是指两个或多个事件在同一时间间隔内发生.在单核CPU下的多线程其实都只是并发,不是并行. 进程是系统资源分配的最小单位,进程的出现是为了更好的 ...
- python进程/线程/协程
一 背景知识 顾名思义,进程即正在执行的一个过程.进程是对正在运行程序的一个抽象. 进程的概念起源于操作系统,是操作系统最核心的概念,也是操作系统提供的最古老也是最重要的抽象概念之一.操作系统的其他所 ...
- python 进程/线程/协程 测试
# Author: yeshengbao # -- coding: utf-8 -- # @Time : 2018/5/24 21:38 # 进程:如一个人拥有分身(分数数最好为cpu核心数)几乎同时 ...
- Python并发编程系列之常用概念剖析:并行 串行 并发 同步 异步 阻塞 非阻塞 进程 线程 协程
1 引言 并发.并行.串行.同步.异步.阻塞.非阻塞.进程.线程.协程是并发编程中的常见概念,相似却也有却不尽相同,令人头痛,这一篇博文中我们来区分一下这些概念. 2 并发与并行 在解释并发与并行之前 ...
- python自动化开发学习 进程, 线程, 协程
python自动化开发学习 进程, 线程, 协程 前言 在过去单核CPU也可以执行多任务,操作系统轮流让各个任务交替执行,任务1执行0.01秒,切换任务2,任务2执行0.01秒,在切换到任务3,这 ...
- 进程&线程&协程
进程 一.基本概念 进程是系统资源分配的最小单位, 程序隔离的边界系统由一个个进程(程序)组成.一般情况下,包括文本区域(text region).数据区域(data region)和堆栈(stac ...
- 多道技术 进程 线程 协程 GIL锁 同步异步 高并发的解决方案 生产者消费者模型
本文基本内容 多道技术 进程 线程 协程 并发 多线程 多进程 线程池 进程池 GIL锁 互斥锁 网络IO 同步 异步等 实现高并发的几种方式 协程:单线程实现并发 一 多道技术 产生背景 所有程序串 ...
- python的进程/线程/协程
1.python的多线程 多线程就是在同一时刻执行多个不同的程序,然而python中的多线程并不能真正的实现并行,这是由于cpython解释器中的GIL(全局解释器锁)捣的鬼,这把锁保证了同一时刻只有 ...
随机推荐
- 算法模板——LCA(最近公共祖先)
实现的功能如下——在一个N个点的无环图中,共有N-1条边,M个访问中每次询问两个点的距离 原理——既然N个点,N-1条边,则说明这是一棵树,而且联通.所以以1为根节点DFS建树,然后通过求两点的LCA ...
- 1651: [Usaco2006 Feb]Stall Reservations 专用牛棚
1651: [Usaco2006 Feb]Stall Reservations 专用牛棚 Time Limit: 10 Sec Memory Limit: 64 MBSubmit: 566 Sol ...
- JVM运行和类加载过程
JAVA的JVM的内存可分为3个区:堆(heap).栈(stack)和方法区(method) (该知识点引用 http://www.cnblogs.com/dingyingsi/p/3760730.h ...
- osprofiler在openstack Cinder里的使用
最近在做OpenStack Cinder driver的性能调试, 之前一直是通过在driver里面加入decorator,完成driver各个接口的执行时间的统计. 其实在openstack,已经在 ...
- TypeScript设计模式之中介者、观察者
看看用TypeScript怎样实现常见的设计模式,顺便复习一下. 学模式最重要的不是记UML,而是知道什么模式可以解决什么样的问题,在做项目时碰到问题可以想到用哪个模式可以解决,UML忘了可以查,思想 ...
- 关于Maven的安装及初步使用
关于Maven的初步使用 1. 下载: 进入http://maven.apache.org/download.cgi下载 Maven 3.3.1 2. 将压缩包解压到自己的硬盘中,最好放在某个盘 ...
- 模拟一个shuffle
之所以会想到写这么一个shuffle的例子,是因为一个需求:我需要把一个有序数组中的数据随机的打散.java代码如下, public void shuffle() { int[] arr = {1,2 ...
- windows修改Host后未生效。
打开CMD命令,输入ipconfig /flushdns即可
- iOS开发之自定义UITableView的cell
系统默认的UITableViewCell的每行都有横线(分隔符),就算没有数据也是如此,有时候我们想只在有数据的地方有下划线,可以去除下划线,然后在awarkFromNid方法中使用addsubvie ...
- calendar.js(日历组件封装)
最近一直闲来无事,便寻思着做一下自己的个人项目,也想说能使用现在比较流行的一些mvvm框架来做,于是就选用了这样的一个技术栈vue2.0+vue-router+vuex+webpack来做,做得也是多 ...