最近一直在做多视图的聚类与分裂,想要图片有更多的视图,就得对图片的特征进行抽取,那我们来聊聊图片的LBP特征。

Local binary patterns (局部二值模式),是机器视觉中重要的一种特征,它属于一个纹理问题。其核心是将各个元素与其他附近的像素进行比较,然后把结果保存为二进制数。LBP最重要的属性是对诸如光照变化等造成的灰度变化的鲁棒性。它的另外一个重要特性是它的计算简单,这使得它可以对图像进行实时分析。、

LBP算子的计算流程:

首先如下图1:每个点的像素值表示出来,如果比中心的点大或者等于则为1,小则为0.得到图2为:其中以这个3x3的矩阵最上面最左边第一个为1,然后顺时针依次变成2,4,8,16,32,64,125

图1                        图2                    图3

此处的LBP=1+16+32+64+128=251

以上就是传统LBP的计算过程。当然还有周围16个的,还有用圆去标注的。如下图:本质上的计算方法都一样,这里就不做赘述了。

Matlab实现:

function [ LBPHistogram ] = LBP( OrgIm,DoUniform)% if DoUniform = true -> return hisogram of 10 bin, if DoUniform = false -> return hisogram of 256 bin

Row=size(OrgIm,1);

Col=size(OrgIm,2);

for i=2:Row-1

for j=2:Col-1

Uniform = true;

MidPixelValue=OrgIm(i,j);

EncodedVec(1)=OrgIm(i-1,j-1)>MidPixelValue;

EncodedVec(2)=OrgIm(i-1,j)>MidPixelValue;

EncodedVec(3)=OrgIm(i-1,j+1)>MidPixelValue;

EncodedVec(4)=OrgIm(i,j+1)>MidPixelValue;

EncodedVec(5)=OrgIm(i+1,j+1)>MidPixelValue;

EncodedVec(6)=OrgIm(i+1,j)>MidPixelValue;

EncodedVec(7)=OrgIm(i+1,j-1)>MidPixelValue;

EncodedVec(8)=OrgIm(i,j-1)>MidPixelValue;

EncodedVecShift = circshift(EncodedVec,[0,1]);

if DoUniform

if sum(xor(EncodedVec,EncodedVecShift)) > 2 % more than 2 transition of 0 -> 1

Uniform = false;

LBPImage(i,j)=9;

end

end

if or(Uniform == true , DoUniform == false) % if LBP not uniform mode , or the texture is uniform -> 8 bits assign

MinLbp = EncodedVec(1)*2^7+EncodedVec(2)*2^6+EncodedVec(3)*2^5+EncodedVec(4)*2^4+EncodedVec(5)*2^3+EncodedVec(6)*2^2+EncodedVec(7)*2^1+EncodedVec(8)*2^0;

MinVector = EncodedVec;

for k = 1 : 7

EncodedVec = circshift(EncodedVec,[0,1]);

CurrLbpValue =EncodedVec(1)*2^7+EncodedVec(2)*2^6+EncodedVec(3)*2^5+EncodedVec(4)*2^4+EncodedVec(5)*2^3+EncodedVec(6)*2^2+EncodedVec(7)*2^1+EncodedVec(8)*2^0;

if CurrLbpValue < MinLbp

MinLbp = CurrLbpValue;

MinVector = EncodedVec;

end

end

LBPImage(i,j)=MinVector(1)*2^7+MinVector(2)*2^6+MinVector(3)*2^5+MinVector(4)*2^4+MinVector(5)*2^3+MinVector(6)*2^2+MinVector(7)*2^1+MinVector(8)*2^0;

end

end

end

if DoUniform

LBPImage(LBPImage ~=9) = log2(LBPImage(LBPImage ~=9)+1);

LBPHistogram=zeros(1,10);

for i =1:size(LBPImage,1)

for k = 1:size(LBPImage,2)

LBPHistogram(1,LBPImage(i,k)+1)=LBPHistogram(1,LBPImage(i,k)+1)+1;

end

end

else

LBPHistogram=zeros(1,256);

for i =1:size(LBPImage,1)

for k = 1:size(LBPImage,2)

LBPHistogram(1,LBPImage(i,k)+1)=LBPHistogram(1,LBPImage(i,k)+1)+1;

end

end

end

end

机器视觉----LBP的更多相关文章

  1. 机器视觉 Local Binary Pattern (LBP)

    Local binary pattern (LBP),在机器视觉领域,是非常重要的一种特征.LBP可以有效地处理光照变化,在纹理分析,纹理识别方面被广泛应用. LBP 的算法非常简单,简单来说,就是对 ...

  2. 机器视觉: LBP-TOP

    之前介绍过机器视觉中常用到的一种特征:LBP http://blog.csdn.net/matrix_space/article/details/50481641 LBP可以有效地处理光照变化,在纹理 ...

  3. 特征描述之LBP

    LBP 在数字图像处理和模式识别领域,LBP指局部二值模式,英文全称:Local Binary Patterns.最初功能为辅助图像局部对比度,并不是一个完整的特征描述子. 后来提升为一种有效的纹理描 ...

  4. C#机器视觉入门系列1-转化为灰度图&&3*3模糊

    这是我入门机器视觉的系列学习经验之开篇,本来想着依靠opencv快速实现一些功能,但是想了一下既然是学数学的,还是应该自己多算算,写一些自己理解的东西才好. 入门篇很简单,就只是实现了转化成灰度图以及 ...

  5. 常用机器视觉工具----图像分析工具(blob分析)

    http://blog.sina.com.cn/s/blog_67cc4eb70100ivnt.html Blob分析:Blob分析目的在于对图像中的2-D形状进行检测和分析,得到诸如目标位置.形状. ...

  6. 图像特征提取之LBP特征

    LBP(Local Binary Pattern,局部二值模式)是一种用来描述图像局部纹理特征的算子:它具有旋转不变性和灰度不变性等显著的优点.它是首先由T. Ojala, M.Pietik?inen ...

  7. 人脸识别经典算法二:LBP方法

    与第一篇博文特征脸方法不同,LBP(Local Binary Patterns,局部二值模式)是提取局部特征作为判别依据的.LBP方法显著的优点是对光照不敏感,但是依然没有解决姿态和表情的问题.不过相 ...

  8. halcon学习笔记——机器视觉工程应用的开发思路【转】

    转自:http://www.cnblogs.com/hanzhaoxin/archive/2013/02/15/2912879.html 机器视觉工程应用主要可划分为硬件和软件两大部分. 硬件:工程应 ...

  9. 图像特征提取三大法宝:HOG特征,LBP特征,Haar特征(转载)

    (一)HOG特征 1.HOG特征: 方向梯度直方图(Histogram of Oriented Gradient, HOG)特征是一种在计算机视觉和图像处理中用来进行物体检测的特征描述子.它通过计算和 ...

随机推荐

  1. 用notepad如何在每行结尾处添加特殊字符

    在处理关键词的时候,有时候需要将每一行的末尾添加某个特殊字符,较常用的一种方法就是用excel拼接起来.今天要分享是一种简单的方法,用notepad就可以很容易实现,主要用到notepad中的扩展匹配 ...

  2. 阿里云服务器(Windows)如何下载文件

    背景:公司只有我一个技术,在我之前还有一个老技术,属于兼职状态,为了尽快熟悉公司网站及app项目情况,我联系了老技术,请他尽快将代码发给我,他说代码文件过大,问我能不能连上服务器下载.百度了很多,都不 ...

  3. 将指定目录中的txt文件转化成excel文件

    #!/usr/bin/env python#coding:utf-8import reimport osimport globimport xlwtimport sysdir=r"F:\te ...

  4. 【Linux】ssh免密登录

    一.ssh免密配置 ssh 无密码登录要使用公钥与私钥.linux下可以用用ssh-keygen生成公钥/私钥对,下面我以CentOS为例.有机器A(192.168.1.155),B(192.168. ...

  5. edittext基本用法总结.md

    光标的有关问题 edittext.setSelection(2); //记住一个不能越界的bug edittext.setCursorVisible(false); //设置光标显示,不能设置光标颜色 ...

  6. Java8 Stream简介

    Stream是Java 8新增的重要特性, 它提供函数式编程支持并允许以管道方式操作集合. 流操作会遍历数据源, 使用管道式操作处理数据后生成结果集合, 这个过程通常不会对数据源造成影响. lambd ...

  7. tomcat 和 jboss access log 日志输出详解

    详见:http://blog.yemou.net/article/query/info/tytfjhfascvhzxcyt179 工作中nginx+jboss/tomcat反向代理集成,想打开后端jb ...

  8. jdk源码研究1-HashMap

    今天开始,研读下jdk的常用类的一些源码,下面是jdk中HashMap的研究.诚然,网上已经很多这方面的总结了,但是,个人只是想单纯地把自己的理解过程进行记录,大牛们就绕路吧,当然,欢迎扔砖头.下面是 ...

  9. hashMap和treeMap

    前言 首先介绍一下什么是Map.在数组中我们是通过数组下标来对其内容索引的,而在Map中我们通过对象来对对象进行索引,用来索引的对象叫做key,其对应的对象叫做value.这就是我们平时说的键值对. ...

  10. 【Beta】 第七次Daily Scrum Meeting

    第七次meeting会议 [Beta] 第七次Daily Scrum Meeting 一.本次会议为第七次meeting会议 二.时间:10:00AM-10:20AM 地点:禹州楼 三.会议站立式照片 ...