JavaScript算法 ,Python算法,Go算法,java算法,系列之【归并排序】篇
常见的内部排序算法有:插入排序、希尔排序、选择排序、冒泡排序、归并排序、快速排序、堆排序、基数排序等。用一张图概括:
归并排序(英语:Merge sort,或mergesort),是创建在归并操作上的一种有效的排序算法,效率为O(n log n)。1945年由约翰·冯·诺伊曼首次提出。该算法是采用分治法(Divide and Conquer)的一个非常典型的应用,且各层分治递归可以同时进行。
作为一种典型的分而治之思想的算法应用,归并排序的实现由两种方法:
自上而下的递归(所有递归的方法都可以用迭代重写,所以就有了第 2 种方法);
自下而上的迭代;
在《数据结构与算法 JavaScript 描述》中,作者给出了自下而上的迭代方法。但是对于递归法,作者却认为:
However, it is not possible to do so in JavaScript, as the recursion goes too deep for the language to handle.
然而,在 JavaScript 中这种方式不太可行,因为这个算法的递归深度对它来讲太深了。
说实话,我不太理解这句话。意思是 JavaScript 编译器内存太小,递归太深容易造成内存溢出吗?还望有大神能够指教。
和选择排序一样,归并排序的性能不受输入数据的影响,但表现比选择排序好的多,因为始终都是 O(nlogn) 的时间复杂度。代价是需要额外的内存空间。
算法步骤
申请空间,使其大小为两个已经排序序列之和,该空间用来存放合并后的序列;
设定两个指针,最初位置分别为两个已经排序序列的起始位置;
比较两个指针所指向的元素,选择相对小的元素放入到合并空间,并移动指针到下一位置;
重复步骤 3 直到某一指针达到序列尾;
将另一序列剩下的所有元素直接复制到合并序列尾。
动图演示
1、JavaScript 代码实现
function mergeSort(arr) {
var len = arr.length;
if(len < 2) {
return arr;
}
var middle = Math.floor(len / 2),
left = arr.slice(0, middle),
right = arr.slice(middle);
return merge(mergeSort(left), mergeSort(right));
} function merge(left, right){
var result = []; while (left.length && right.length) {
if (left[0] <= right[0]) {
result.push(left.shift());
} else {
result.push(right.shift());
}
} while (left.length)
result.push(left.shift()); while (right.length)
result.push(right.shift()); return result;
}
2、Python 代码实现
def mergeSort(arr):
import math
if(len(arr)<2):
return arr
middle = math.floor(len(arr)/2)
left, right = arr[0:middle], arr[middle:]
return merge(mergeSort(left), mergeSort(right)) def merge(left,right):
result = []
while left and right:
if left[0] <= right[0]:
result.append(left.pop(0));
else:
result.append(right.pop(0));
while left:
result.append(left.pop(0));
while right:
result.append(right.pop(0));
return result
3、Go 代码实现
func mergeSort(arr []int) []int {
length := len(arr)
if length < 2 {
return arr
}
middle := length / 2
left := arr[0:middle]
right := arr[middle:]
return merge(mergeSort(left), mergeSort(right))
} func merge(left []int, right []int) []int {
var result []int
for len(left) != 0 && len(right) != 0 {
if left[0] <= right[0] {
result = append(result, left[0])
left = left[1:]
} else {
result = append(result, right[0])
right = right[1:]
}
} for len(left) != 0 {
result = append(result, left[0])
left = left[1:]
} for len(right) != 0 {
result = append(result, right[0])
right = right[1:]
} return result
}
4、Java实现
public static int[] sort(int[] nums, int low, int high) {
int mid = (low + high) / 2;
if (low < high) { sort(nums, low, mid); sort(nums, mid + 1, high); merge(nums, low, mid, high);
}
return nums;
} /**
* 将数组中low到high位置的数进行排序
* nums 待排序数组
* low 待排的开始位置
* mid 待排中间位置
* high 待排结束位置
*/
public static void merge(int[] nums, int low, int mid, int high) {
int[] temp = new int[high - low + 1];
int i = low;
int j = mid + 1;
int k = 0; while (i <= mid && j <= high) {
if (nums[i] < nums[j]) {
temp[k++] = nums[i++];
} else {
temp[k++] = nums[j++];
}
} while (i <= mid) {
temp[k++] = nums[i++];
} while (j <= high) {
temp[k++] = nums[j++];
} for (int k2 = 0; k2 < temp.length; k2++) {
nums[k2 + low] = temp[k2];
}
}
希望可以一起交流技术,有兴趣可以加qq邀请入群:525331804 全栈技术开发qq群:581993430
JavaScript算法 ,Python算法,Go算法,java算法,系列之【归并排序】篇的更多相关文章
- 死磕 java同步系列之终结篇
简介 同步系列到此就结束了,本篇文章对同步系列做一个总结. 脑图 下面是关于同步系列的一份脑图,列举了主要的知识点和问题点,看过本系列文章的同学可以根据脑图自行回顾所学的内容,也可以作为面试前的准备. ...
- 【机器学习算法-python实现】採样算法的简单实现
1.背景 採样算法是机器学习中比較经常使用,也比較easy实现的(出去分层採样).经常使用的採样算法有下面几种(来自百度知道): 一.单纯随机抽样(simple random samp ...
- Java面试系列第2篇-Object类中的方法
Java的Object是所有引用类型的父类,定义的方法按照用途可以分为以下几种: (1)构造函数 (2)hashCode() 和 equals() 函数用来判断对象是否相同 (3)wait().wai ...
- Java面试系列第3篇-HashMap相关面试题
HashMap是非线程安全的,如果想要用线程安全的map,可使用同步的HashTable或通过Collections.synchronizeMap(hashMap)让HashMap变的同步,或者使用并 ...
- 死磕 java线程系列之终篇
(手机横屏看源码更方便) 简介 线程系列我们基本就学完了,这一个系列我们基本都是围绕着线程池在讲,其实关于线程还有很多东西可以讲,后面有机会我们再补充进来.当然,如果你有什么好的想法,也可以公从号右下 ...
- 压缩感知重构算法之IRLS算法python实现
压缩感知重构算法之OMP算法python实现 压缩感知重构算法之CoSaMP算法python实现 压缩感知重构算法之SP算法python实现 压缩感知重构算法之IHT算法python实现 压缩感知重构 ...
- 压缩感知重构算法之OLS算法python实现
压缩感知重构算法之OMP算法python实现 压缩感知重构算法之CoSaMP算法python实现 压缩感知重构算法之SP算法python实现 压缩感知重构算法之IHT算法python实现 压缩感知重构 ...
- 压缩感知重构算法之CoSaMP算法python实现
压缩感知重构算法之OMP算法python实现 压缩感知重构算法之CoSaMP算法python实现 压缩感知重构算法之SP算法python实现 压缩感知重构算法之IHT算法python实现 压缩感知重构 ...
- 压缩感知重构算法之IHT算法python实现
压缩感知重构算法之OMP算法python实现 压缩感知重构算法之CoSaMP算法python实现 压缩感知重构算法之SP算法python实现 压缩感知重构算法之IHT算法python实现 压缩感知重构 ...
- 压缩感知重构算法之SP算法python实现
压缩感知重构算法之OMP算法python实现 压缩感知重构算法之CoSaMP算法python实现 压缩感知重构算法之SP算法python实现 压缩感知重构算法之IHT算法python实现 压缩感知重构 ...
随机推荐
- Gson和Json
一下内容为复制别人的: Gson 是 Google 提供的用来在 Java 对象和 JSON 数据之间进行映射的 Java 类库.可以将一个 JSON 字符串转成一个 Java 对象,或者反过来. j ...
- FastDFS分布文件系统相关资料索引
FastDFS是为互联网应用量身定做的一套分布式文件存储系统,非常适合用来存储用户图片.视频.文档等文件.对于互联网应用,和其他分布式文件系统相比,优势非常明显.具体情况大家可以看相关的介绍文档,包括 ...
- JSTL 核心标签库 使用(转)
在JSP的开发中,迭代是经常要使用到的操作.例如,逐行的显示查询的结果等.在早期的JSP中,通常使用Scriptlets来实现Iterator或者Enumeration对象的迭代输出.现在,通过JST ...
- async/await的多线程问题
今天尝试把.net4.5新增的异步编程模型async/await加入自己的框架,因为从第一印象看,使用async/await的写法实在太方便了,以同步代码的方式写异步流程,写起来更顺畅,不容易打断思路 ...
- Javaweb快速学习
孙卫琴老师的javaweb一书已经买了很多年,由于很厚一直也没有去好好阅读下, 项目发布后有闲暇时间,决定快速学习了,毕竟很多概念和知识主要还是复习. 对于互联网,我们可以简单认为浏览器就是会人类语言 ...
- 手机交互应用服务(状态栏提示信息Notifications)
官方的一个简单的例子: NotificationCompat.Builder mBuilder = new NotificationCompat.Builder(this) .setSmallIcon ...
- [UWP]了解模板化控件(4):TemplatePart
1. TemplatePart TemplatePart(部件)是指ControlTemplate中的命名元素.控件逻辑预期这些部分存在于ControlTemplate中,并且使用protected ...
- List分组 用于客服对话分组场景
工作用可能会用到会话分组: Message是消息实体对象,里面有toId和fromId 指明接收方ID和发送方Id,通过组合形式"12-22-" 为map的key public M ...
- 学习Sass笔记之概念篇
1 什么是CSS预处理器 首先我们了解一下什么是CSS预处理器:通俗的说,“CSS 预处理器用一种专门的编程语言,进行 Web 页面样式设计,然后再编译成正常的 CSS 文件,以供项目使用.CSS 预 ...
- Python 列表(List) 的三种遍历(序号和值)方法
三种遍历列表里面序号和值的方法: 最近学习python这门语言,感觉到其对自己的工作效率有很大的提升,特在情人节这一天写下了这篇博客,下面废话不多说,直接贴代码 #!/usr/bin/env pyth ...