转载请注明出处:http://www.cnblogs.com/willnote/p/6874699.html

前言

本文假设大家对CNN、softmax原理已经比较熟悉,着重点在于使用Tensorflow对CNN的简单实践上。所以不会对算法进行详细介绍,主要针对代码中所使用的一些函数定义与用法进行解释,并给出最终运行代码。如果对Tensorflow的一些基本操作不熟悉的话,推荐先看下极客学院的这篇文章再回来看本文。

数据集

数据集是MNIST,一个入门级的计算机视觉数据集,它包含各种手写数字图片:



每张图片包含28X28个像素点,标签即为图片中的数字。

问题

使用MNIST数据集进行训练,识别图片中的手写数字(0到9共10类)。

思路

使用一个简单的CNN网络结构如下,括号里边表示tensor经过本层后的输出shape:

  • 输入层(28 * 28 * 1)
  • 卷积层1(28 * 28 * 32)
  • pooling层1(14 * 14 * 32)
  • 卷积层2(14 * 14 * 64)
  • pooling层2(7 * 7 * 64)
  • 全连接层(1 * 1024)
  • softmax层(10)

具体的参数看后边的代码注释。

函数说明

在撸代码前,先对几个会用到的主要函数中的主要参数进行说明。

tf.truncated_normal(shape, mean=0.0, stddev=1.0, dtype=tf.float32, seed=None, name=None)

随机产生一个形状为shape的服从截断正态分布(均值为mean,标准差为stddev)的tensor。截断的方法根据官方API的定义为,如果单次随机生成的值偏离均值2倍标准差之外,就丢弃并重新随机生成一个新的数。

tf.nn.conv2d(input, filter, strides, padding, use_cudnn_on_gpu=None, data_format=None, name=None)

  • input

    input是一个形状为[batch, in_height, in_width, in_channels]的tensor:

    • batch

      每次batch数据的数量。

      • in_height,in_width

        输入矩阵的高和宽,如输入层的图片是28*28,则in_height和in_width就都为28。
    • in_channels

      输入通道数量。如输入层的图片经过了二值化,则通道为1,如果输入层的图片是RGB彩色的,则通道为3;再如卷积层1有32个通道,则pooling层1的输入(卷积层1的输出)即为32通道。
  • filter

    filter是一个形状为[filter_height, filter_width, in_channels, out_channels]的tensor:

    • filter_height, filter_width

      卷积核的高与宽。如卷积层1中的卷积核,filter_height, filter_width都为28。
    • in_channels

      输入通道数量。
    • out_channels

      输出通道的数量。如输入数据经过卷积层1后,通道数量从1变为32。
  • strides

    strides是指滑动窗口(卷积核)的滑动规则,包含4个维度,分别对应input的4个维度,即每次在input tensor上滑动时的步长。其中batch和in_channels维度一般都设置为1,所以形状为[1, stride, stride, 1]
  • padding

    这个在之前的文章中说过,这里不再复述,看这里回顾。

tf.nn.max_pool(value, ksize, strides, padding, data_format='NHWC', name=None)

  • value

    以tf.nn.conv2d()函数的参数input理解即可。
  • ksize

    滑动窗口(pool)的大小尺寸,这里注意这个大小尺寸并不仅仅指2维上的高和宽,ksize的每个维度同样对应input的各个维度(只是大小,不是滑动步长),同样的,batch和in_channels维度多设置为1。如pooling层1的ksize即为[1, 2, 2, 1],即用一个2*2的窗口做pooling。
  • strides

    同tf.nn.conv2d()函数的参数strides。
  • padding

    这里

tf.nn.dropout(x, keep_prob, noise_shape=None, seed=None, name=None)

这里不对dropout的算法进行描述,如果不知道自行百度。

  • x

    输入tensor。
  • keep_prob

    x中每个元素的输出概率,输出为原值或0。

代码

talk is cheap, show me the code.

#coding:utf-8
import tensorflow as tf
import MNIST_data.input_data as input_data
import time """
权重初始化
初始化为一个接近0的很小的正数
"""
def weight_variable(shape):
initial = tf.truncated_normal(shape, stddev = 0.1)
return tf.Variable(initial) def bias_variable(shape):
initial = tf.constant(0.1, shape = shape)
return tf.Variable(initial) """
卷积和池化,使用卷积步长为1(stride size),0边距(padding size)
池化用简单传统的2x2大小的模板做max pooling
"""
def conv2d(x, W):
return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding = 'SAME')
# tf.nn.conv2d(input, filter, strides, padding, use_cudnn_on_gpu=None, data_format=None, name=None)
# x(input) : [batch, in_height, in_width, in_channels]
# W(filter) : [filter_height, filter_width, in_channels, out_channels]
# strides : The stride of the sliding window for each dimension of input.
# For the most common case of the same horizontal and vertices strides, strides = [1, stride, stride, 1] def max_pool_2x2(x):
return tf.nn.max_pool(x, ksize = [1, 2, 2, 1],
strides = [1, 2, 2, 1], padding = 'SAME')
# tf.nn.max_pool(value, ksize, strides, padding, data_format='NHWC', name=None)
# x(value) : [batch, height, width, channels]
# ksize(pool大小) : A list of ints that has length >= 4. The size of the window for each dimension of the input tensor.
# strides(pool滑动大小) : A list of ints that has length >= 4. The stride of the sliding window for each dimension of the input tensor. start = time.clock() #计算开始时间
mnist = input_data.read_data_sets("MNIST_data/", one_hot=True) #MNIST数据输入 """
第一层 卷积层 x_image(batch, 28, 28, 1) -> h_pool1(batch, 14, 14, 32)
"""
x = tf.placeholder(tf.float32,[None, 784])
x_image = tf.reshape(x, [-1, 28, 28, 1]) #最后一维代表通道数目,如果是rgb则为3
W_conv1 = weight_variable([5, 5, 1, 32])
b_conv1 = bias_variable([32]) h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1)
# x_image -> [batch, in_height, in_width, in_channels]
# [batch, 28, 28, 1]
# W_conv1 -> [filter_height, filter_width, in_channels, out_channels]
# [5, 5, 1, 32]
# output -> [batch, out_height, out_width, out_channels]
# [batch, 28, 28, 32]
h_pool1 = max_pool_2x2(h_conv1)
# h_conv1 -> [batch, in_height, in_weight, in_channels]
# [batch, 28, 28, 32]
# output -> [batch, out_height, out_weight, out_channels]
# [batch, 14, 14, 32] """
第二层 卷积层 h_pool1(batch, 14, 14, 32) -> h_pool2(batch, 7, 7, 64)
"""
W_conv2 = weight_variable([5, 5, 32, 64])
b_conv2 = bias_variable([64]) h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2)
# h_pool1 -> [batch, 14, 14, 32]
# W_conv2 -> [5, 5, 32, 64]
# output -> [batch, 14, 14, 64]
h_pool2 = max_pool_2x2(h_conv2)
# h_conv2 -> [batch, 14, 14, 64]
# output -> [batch, 7, 7, 64] """
第三层 全连接层 h_pool2(batch, 7, 7, 64) -> h_fc1(1, 1024)
"""
W_fc1 = weight_variable([7 * 7 * 64, 1024])
b_fc1 = bias_variable([1024]) h_pool2_flat = tf.reshape(h_pool2, [-1, 7 * 7 * 64])
h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1) """
Dropout h_fc1 -> h_fc1_drop, 训练中启用,测试中关闭
"""
keep_prob = tf.placeholder("float")
h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob) """
第四层 Softmax输出层
"""
W_fc2 = weight_variable([1024, 10])
b_fc2 = bias_variable([10]) y_conv = tf.nn.softmax(tf.matmul(h_fc1_drop, W_fc2) + b_fc2) """
训练和评估模型 ADAM优化器来做梯度最速下降,feed_dict中加入参数keep_prob控制dropout比例
"""
y_ = tf.placeholder("float", [None, 10])
cross_entropy = -tf.reduce_sum(y_ * tf.log(y_conv)) #计算交叉熵
train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy) #使用adam优化器来以0.0001的学习率来进行微调
correct_prediction = tf.equal(tf.argmax(y_conv,1), tf.argmax(y_,1)) #判断预测标签和实际标签是否匹配
accuracy = tf.reduce_mean(tf.cast(correct_prediction,"float")) sess = tf.Session() #启动创建的模型
sess.run(tf.initialize_all_variables()) #旧版本
#sess.run(tf.global_variables_initializer()) #初始化变量 for i in range(5000): #开始训练模型,循环训练5000次
batch = mnist.train.next_batch(50) #batch大小设置为50
if i % 100 == 0:
train_accuracy = accuracy.eval(session = sess,
feed_dict = {x:batch[0], y_:batch[1], keep_prob:1.0})
print("step %d, train_accuracy %g" %(i, train_accuracy))
train_step.run(session = sess, feed_dict = {x:batch[0], y_:batch[1],
keep_prob:0.5}) #神经元输出保持不变的概率 keep_prob 为0.5 print("test accuracy %g" %accuracy.eval(session = sess,
feed_dict = {x:mnist.test.images, y_:mnist.test.labels,
keep_prob:1.0})) #神经元输出保持不变的概率 keep_prob 为 1,即不变,一直保持输出 end = time.clock() #计算程序结束时间
print("running time is %g s") % (end-start)

参考

  1. 深入MNIST
  2. 学习TensorFlow的第三天
  3. tensorflow官方API - tf.truncated_normal
  4. tensorflow官方API - tf.nn.conv2d
  5. tensorflow官方API - tf.nn.max_pool
  6. tensorflow官方API - tf.nn.dropout

Tensorflow实践:CNN实现MNIST手写识别模型的更多相关文章

  1. Tensorflow编程基础之Mnist手写识别实验+关于cross_entropy的理解

    好久没有静下心来写点东西了,最近好像又回到了高中时候的状态,休息不好,无法全心学习,恶性循环,现在终于调整的好一点了,听着纯音乐突然非常伤感,那些曾经快乐的大学时光啊,突然又慢慢的一下子出现在了眼前, ...

  2. tensorflow笔记(五)之MNIST手写识别系列二

    tensorflow笔记(五)之MNIST手写识别系列二 版权声明:本文为博主原创文章,转载请指明转载地址 http://www.cnblogs.com/fydeblog/p/7455233.html ...

  3. tensorflow笔记(四)之MNIST手写识别系列一

    tensorflow笔记(四)之MNIST手写识别系列一 版权声明:本文为博主原创文章,转载请指明转载地址 http://www.cnblogs.com/fydeblog/p/7436310.html ...

  4. Tensorflow之基于MNIST手写识别的入门介绍

    Tensorflow是当下AI热潮下,最为受欢迎的开源框架.无论是从Github上的fork数量还是star数量,还是从支持的语音,开发资料,社区活跃度等多方面,他当之为superstar. 在前面介 ...

  5. 深度学习-tensorflow学习笔记(1)-MNIST手写字体识别预备知识

    深度学习-tensorflow学习笔记(1)-MNIST手写字体识别预备知识 在tf第一个例子的时候需要很多预备知识. tf基本知识 香农熵 交叉熵代价函数cross-entropy 卷积神经网络 s ...

  6. 深度学习-tensorflow学习笔记(2)-MNIST手写字体识别

    深度学习-tensorflow学习笔记(2)-MNIST手写字体识别超级详细版 这是tf入门的第一个例子.minst应该是内置的数据集. 前置知识在学习笔记(1)里面讲过了 这里直接上代码 # -*- ...

  7. 使用tensorflow实现mnist手写识别(单层神经网络实现)

    import tensorflow as tf import tensorflow.examples.tutorials.mnist.input_data as input_data import n ...

  8. (五) Keras Adam优化器以及CNN应用于手写识别

    视频学习来源 https://www.bilibili.com/video/av40787141?from=search&seid=17003307842787199553 笔记 Adam,常 ...

  9. win10下通过Anaconda安装TensorFlow-GPU1.3版本,并配置pycharm运行Mnist手写识别程序

    折腾了一天半终于装好了win10下的TensorFlow-GPU版,在这里做个记录. 准备安装包: visual studio 2015: Anaconda3-4.2.0-Windows-x86_64 ...

随机推荐

  1. 搭建ntp 时钟服务器_Linux

    一.搭建时间同步服务器1.编译安装ntp serverwget [url]http://www.eecis.udel.edu/~ntp/ntp_spool/ntp4/ntp-4.2.4p4.tar.g ...

  2. 自动化利器-YUM仓库搭建实战

    本地YUM仓库搭建实战 YUM主要用于自动安装.升级rpm软件包,它能自动查找并解决rpm包之间的依赖关系.要成功的使用YUM工具安装更新软件或系统,就需要有一个包含各种rpm软件包的reposito ...

  3. js 操作属性

    操作属性: 对象.setAttribute('属性名','值'); - 添加属性 对象.getAttribute('属性名'); - 获取属性值,如无此属性,那么返回null 对象.removeAtt ...

  4. 实用开发之-oracle表回滚到一个指定时间的操作语句

    在开发或客户使用过程中,难免会出现误操作或脏数据,那么怎么迅速处理这个问题呢? 1.备份还原就用了,太麻烦. 就是使用ORACLE的备份功能,然后在还原,还原的时候新建一个库,然后使用dblink进行 ...

  5. ajax大洋第一步

    Ajax工具包 Ajax并不是一项新技术,它实际上是几种技术,每种技术各尽其职,以一种全新的方式聚合在一起. 服务器端语言:服务器需要具备向浏览器发送特定信息的能力.Ajax与服务器端语言无关. XM ...

  6. wampserver安装错误 应用程序无法正常启动0xc000007b解决方法

    在重装系统之后发现以前安装的wampserver启动会出现错误提示"应用程序无法正常启动0xc000007b解决方法",重新安装也是一样的错误.上网找了相关信息后发现,并不是只有本 ...

  7. activiti 5.15.1 动态手动通过java编码方式,实现创建用户任务,动态指定个人,用户组,角色,指定监听的实现

    因为我们的业务需要,最近一直在搞动态动过java程序实现为用户任务绑定监听程序.碰了很多壁,查看了API文档,最后终于在找到解决办法,所以贴出来,希望能够留个底,也能帮助有需要的人. -------- ...

  8. Spring Boot 学习笔记--整合Redis

    1.新建Spring Boot项目 添加spring-boot-starter-data-redis依赖 <dependency> <groupId>org.springfra ...

  9. Android -- Annotation(注解)原理详解及常见框架应用

    1,我们在上一篇讲到了EventBus源码及3.0版本的简单使用,知道了我们3.0版本是使用注解方式标记事件响应方法的,这里我们就有一个疑问了,为什么在一个方法加上类似于"@Subscrib ...

  10. 简单聊聊Storm的流分组策略

    简单聊聊Storm的流分组策略 首先我要强调的是,Storm的分组策略对结果有着直接的影响,不同的分组的结果一定是不一样的.其次,不同的分组策略对资源的利用也是有着非常大的不同,本文主要讲一讲loca ...