转载请注明出处:http://www.cnblogs.com/willnote/p/6874699.html

前言

本文假设大家对CNN、softmax原理已经比较熟悉,着重点在于使用Tensorflow对CNN的简单实践上。所以不会对算法进行详细介绍,主要针对代码中所使用的一些函数定义与用法进行解释,并给出最终运行代码。如果对Tensorflow的一些基本操作不熟悉的话,推荐先看下极客学院的这篇文章再回来看本文。

数据集

数据集是MNIST,一个入门级的计算机视觉数据集,它包含各种手写数字图片:



每张图片包含28X28个像素点,标签即为图片中的数字。

问题

使用MNIST数据集进行训练,识别图片中的手写数字(0到9共10类)。

思路

使用一个简单的CNN网络结构如下,括号里边表示tensor经过本层后的输出shape:

  • 输入层(28 * 28 * 1)
  • 卷积层1(28 * 28 * 32)
  • pooling层1(14 * 14 * 32)
  • 卷积层2(14 * 14 * 64)
  • pooling层2(7 * 7 * 64)
  • 全连接层(1 * 1024)
  • softmax层(10)

具体的参数看后边的代码注释。

函数说明

在撸代码前,先对几个会用到的主要函数中的主要参数进行说明。

tf.truncated_normal(shape, mean=0.0, stddev=1.0, dtype=tf.float32, seed=None, name=None)

随机产生一个形状为shape的服从截断正态分布(均值为mean,标准差为stddev)的tensor。截断的方法根据官方API的定义为,如果单次随机生成的值偏离均值2倍标准差之外,就丢弃并重新随机生成一个新的数。

tf.nn.conv2d(input, filter, strides, padding, use_cudnn_on_gpu=None, data_format=None, name=None)

  • input

    input是一个形状为[batch, in_height, in_width, in_channels]的tensor:

    • batch

      每次batch数据的数量。

      • in_height,in_width

        输入矩阵的高和宽,如输入层的图片是28*28,则in_height和in_width就都为28。
    • in_channels

      输入通道数量。如输入层的图片经过了二值化,则通道为1,如果输入层的图片是RGB彩色的,则通道为3;再如卷积层1有32个通道,则pooling层1的输入(卷积层1的输出)即为32通道。
  • filter

    filter是一个形状为[filter_height, filter_width, in_channels, out_channels]的tensor:

    • filter_height, filter_width

      卷积核的高与宽。如卷积层1中的卷积核,filter_height, filter_width都为28。
    • in_channels

      输入通道数量。
    • out_channels

      输出通道的数量。如输入数据经过卷积层1后,通道数量从1变为32。
  • strides

    strides是指滑动窗口(卷积核)的滑动规则,包含4个维度,分别对应input的4个维度,即每次在input tensor上滑动时的步长。其中batch和in_channels维度一般都设置为1,所以形状为[1, stride, stride, 1]
  • padding

    这个在之前的文章中说过,这里不再复述,看这里回顾。

tf.nn.max_pool(value, ksize, strides, padding, data_format='NHWC', name=None)

  • value

    以tf.nn.conv2d()函数的参数input理解即可。
  • ksize

    滑动窗口(pool)的大小尺寸,这里注意这个大小尺寸并不仅仅指2维上的高和宽,ksize的每个维度同样对应input的各个维度(只是大小,不是滑动步长),同样的,batch和in_channels维度多设置为1。如pooling层1的ksize即为[1, 2, 2, 1],即用一个2*2的窗口做pooling。
  • strides

    同tf.nn.conv2d()函数的参数strides。
  • padding

    这里

tf.nn.dropout(x, keep_prob, noise_shape=None, seed=None, name=None)

这里不对dropout的算法进行描述,如果不知道自行百度。

  • x

    输入tensor。
  • keep_prob

    x中每个元素的输出概率,输出为原值或0。

代码

talk is cheap, show me the code.

#coding:utf-8
import tensorflow as tf
import MNIST_data.input_data as input_data
import time """
权重初始化
初始化为一个接近0的很小的正数
"""
def weight_variable(shape):
initial = tf.truncated_normal(shape, stddev = 0.1)
return tf.Variable(initial) def bias_variable(shape):
initial = tf.constant(0.1, shape = shape)
return tf.Variable(initial) """
卷积和池化,使用卷积步长为1(stride size),0边距(padding size)
池化用简单传统的2x2大小的模板做max pooling
"""
def conv2d(x, W):
return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding = 'SAME')
# tf.nn.conv2d(input, filter, strides, padding, use_cudnn_on_gpu=None, data_format=None, name=None)
# x(input) : [batch, in_height, in_width, in_channels]
# W(filter) : [filter_height, filter_width, in_channels, out_channels]
# strides : The stride of the sliding window for each dimension of input.
# For the most common case of the same horizontal and vertices strides, strides = [1, stride, stride, 1] def max_pool_2x2(x):
return tf.nn.max_pool(x, ksize = [1, 2, 2, 1],
strides = [1, 2, 2, 1], padding = 'SAME')
# tf.nn.max_pool(value, ksize, strides, padding, data_format='NHWC', name=None)
# x(value) : [batch, height, width, channels]
# ksize(pool大小) : A list of ints that has length >= 4. The size of the window for each dimension of the input tensor.
# strides(pool滑动大小) : A list of ints that has length >= 4. The stride of the sliding window for each dimension of the input tensor. start = time.clock() #计算开始时间
mnist = input_data.read_data_sets("MNIST_data/", one_hot=True) #MNIST数据输入 """
第一层 卷积层 x_image(batch, 28, 28, 1) -> h_pool1(batch, 14, 14, 32)
"""
x = tf.placeholder(tf.float32,[None, 784])
x_image = tf.reshape(x, [-1, 28, 28, 1]) #最后一维代表通道数目,如果是rgb则为3
W_conv1 = weight_variable([5, 5, 1, 32])
b_conv1 = bias_variable([32]) h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1)
# x_image -> [batch, in_height, in_width, in_channels]
# [batch, 28, 28, 1]
# W_conv1 -> [filter_height, filter_width, in_channels, out_channels]
# [5, 5, 1, 32]
# output -> [batch, out_height, out_width, out_channels]
# [batch, 28, 28, 32]
h_pool1 = max_pool_2x2(h_conv1)
# h_conv1 -> [batch, in_height, in_weight, in_channels]
# [batch, 28, 28, 32]
# output -> [batch, out_height, out_weight, out_channels]
# [batch, 14, 14, 32] """
第二层 卷积层 h_pool1(batch, 14, 14, 32) -> h_pool2(batch, 7, 7, 64)
"""
W_conv2 = weight_variable([5, 5, 32, 64])
b_conv2 = bias_variable([64]) h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2)
# h_pool1 -> [batch, 14, 14, 32]
# W_conv2 -> [5, 5, 32, 64]
# output -> [batch, 14, 14, 64]
h_pool2 = max_pool_2x2(h_conv2)
# h_conv2 -> [batch, 14, 14, 64]
# output -> [batch, 7, 7, 64] """
第三层 全连接层 h_pool2(batch, 7, 7, 64) -> h_fc1(1, 1024)
"""
W_fc1 = weight_variable([7 * 7 * 64, 1024])
b_fc1 = bias_variable([1024]) h_pool2_flat = tf.reshape(h_pool2, [-1, 7 * 7 * 64])
h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1) """
Dropout h_fc1 -> h_fc1_drop, 训练中启用,测试中关闭
"""
keep_prob = tf.placeholder("float")
h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob) """
第四层 Softmax输出层
"""
W_fc2 = weight_variable([1024, 10])
b_fc2 = bias_variable([10]) y_conv = tf.nn.softmax(tf.matmul(h_fc1_drop, W_fc2) + b_fc2) """
训练和评估模型 ADAM优化器来做梯度最速下降,feed_dict中加入参数keep_prob控制dropout比例
"""
y_ = tf.placeholder("float", [None, 10])
cross_entropy = -tf.reduce_sum(y_ * tf.log(y_conv)) #计算交叉熵
train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy) #使用adam优化器来以0.0001的学习率来进行微调
correct_prediction = tf.equal(tf.argmax(y_conv,1), tf.argmax(y_,1)) #判断预测标签和实际标签是否匹配
accuracy = tf.reduce_mean(tf.cast(correct_prediction,"float")) sess = tf.Session() #启动创建的模型
sess.run(tf.initialize_all_variables()) #旧版本
#sess.run(tf.global_variables_initializer()) #初始化变量 for i in range(5000): #开始训练模型,循环训练5000次
batch = mnist.train.next_batch(50) #batch大小设置为50
if i % 100 == 0:
train_accuracy = accuracy.eval(session = sess,
feed_dict = {x:batch[0], y_:batch[1], keep_prob:1.0})
print("step %d, train_accuracy %g" %(i, train_accuracy))
train_step.run(session = sess, feed_dict = {x:batch[0], y_:batch[1],
keep_prob:0.5}) #神经元输出保持不变的概率 keep_prob 为0.5 print("test accuracy %g" %accuracy.eval(session = sess,
feed_dict = {x:mnist.test.images, y_:mnist.test.labels,
keep_prob:1.0})) #神经元输出保持不变的概率 keep_prob 为 1,即不变,一直保持输出 end = time.clock() #计算程序结束时间
print("running time is %g s") % (end-start)

参考

  1. 深入MNIST
  2. 学习TensorFlow的第三天
  3. tensorflow官方API - tf.truncated_normal
  4. tensorflow官方API - tf.nn.conv2d
  5. tensorflow官方API - tf.nn.max_pool
  6. tensorflow官方API - tf.nn.dropout

Tensorflow实践:CNN实现MNIST手写识别模型的更多相关文章

  1. Tensorflow编程基础之Mnist手写识别实验+关于cross_entropy的理解

    好久没有静下心来写点东西了,最近好像又回到了高中时候的状态,休息不好,无法全心学习,恶性循环,现在终于调整的好一点了,听着纯音乐突然非常伤感,那些曾经快乐的大学时光啊,突然又慢慢的一下子出现在了眼前, ...

  2. tensorflow笔记(五)之MNIST手写识别系列二

    tensorflow笔记(五)之MNIST手写识别系列二 版权声明:本文为博主原创文章,转载请指明转载地址 http://www.cnblogs.com/fydeblog/p/7455233.html ...

  3. tensorflow笔记(四)之MNIST手写识别系列一

    tensorflow笔记(四)之MNIST手写识别系列一 版权声明:本文为博主原创文章,转载请指明转载地址 http://www.cnblogs.com/fydeblog/p/7436310.html ...

  4. Tensorflow之基于MNIST手写识别的入门介绍

    Tensorflow是当下AI热潮下,最为受欢迎的开源框架.无论是从Github上的fork数量还是star数量,还是从支持的语音,开发资料,社区活跃度等多方面,他当之为superstar. 在前面介 ...

  5. 深度学习-tensorflow学习笔记(1)-MNIST手写字体识别预备知识

    深度学习-tensorflow学习笔记(1)-MNIST手写字体识别预备知识 在tf第一个例子的时候需要很多预备知识. tf基本知识 香农熵 交叉熵代价函数cross-entropy 卷积神经网络 s ...

  6. 深度学习-tensorflow学习笔记(2)-MNIST手写字体识别

    深度学习-tensorflow学习笔记(2)-MNIST手写字体识别超级详细版 这是tf入门的第一个例子.minst应该是内置的数据集. 前置知识在学习笔记(1)里面讲过了 这里直接上代码 # -*- ...

  7. 使用tensorflow实现mnist手写识别(单层神经网络实现)

    import tensorflow as tf import tensorflow.examples.tutorials.mnist.input_data as input_data import n ...

  8. (五) Keras Adam优化器以及CNN应用于手写识别

    视频学习来源 https://www.bilibili.com/video/av40787141?from=search&seid=17003307842787199553 笔记 Adam,常 ...

  9. win10下通过Anaconda安装TensorFlow-GPU1.3版本,并配置pycharm运行Mnist手写识别程序

    折腾了一天半终于装好了win10下的TensorFlow-GPU版,在这里做个记录. 准备安装包: visual studio 2015: Anaconda3-4.2.0-Windows-x86_64 ...

随机推荐

  1. 机器学习:python中如何使用朴素贝叶斯算法

    这里再重复一下标题为什么是"使用"而不是"实现": 首先,专业人士提供的算法比我们自己写的算法无论是效率还是正确率上都要高. 其次,对于数学不好的人来说,为了实 ...

  2. 【Electron】Electron开发入门(二):创建项目Hello Word

    创建简单的Electron程序 1.首先,切换到你的项目空间,我的在 D:\ProjectsSpace\ElectronProjects\ElectronTest,ElectronTest是案例项目文 ...

  3. 4.Linux的文件搜索命令

    1.文件搜索命令  which 语法:which [命令名称] 范例:$which ls  列出ls命令所在目录 [chanshuyi@localhost ~]$ which ls alias ls= ...

  4. QT5 && VS2013配置

    1.下载安装包 qt-opensource-windows-x86-msvc2013_64-5.7.0.exe VS2013_RTM_ULT_ENU.iso 插件:qt-vs-addin-msvc20 ...

  5. 利用callKit实现电话防骚扰

    callKit框架是ios10之后更新的一个框架,代替了原来的CoreTelephony.framework,使用CallKit可以实现电话的拦截 首先创建一个项目之后,创建一个target,选择Ca ...

  6. 大麦盒子(domybox)无法进入系统解决方案!【简单几步】

    大麦无法进入系统解决方案![简单几步]前提准备:电脑一台盒子控制台软件盒子开机并联网并且盒子和电脑处于同一个路由器下的网络! 前提准备:电脑一台盒子控制台软件盒子开机并联网并且盒子和电脑处于同一个路由 ...

  7. Nodejs进阶:express+session实现简易身份认证

    本文摘录自<Nodejs学习笔记>,更多章节及更新,请访问 github主页地址.欢迎加群交流,群号 197339705. 文档概览 本文基于express.express-session ...

  8. Android 正则表达式验证手机号、姓名(包含少数民族)、身份证号

    最近项目中新增的功能,需要对手机号.姓名.身份证号等一些信息进行验证,最好的方法是通过正则表达式来验证,网上查了一些资料,写了这几个工具方法. 1.验证手机号 规则:第一位只能是1,第二位为3-8中的 ...

  9. Linux字符设备与块设备的区别与比较

    Linux中I/O设备分为两类:块设备和字符设备.两种设备本身没有严格限制,但是,基于不同的功能进行了分类. (1) 字符设备:提供连续的数据流,应用程序可以顺序读取,通常不支持随机存取.相反,此类设 ...

  10. hibernate 多对多关系总结

    hibernate中,对对象关系的映射处理估计是最让人迷惑和头疼的,特别是cascade和inverse属性的使用,不知已经杀死了我多少个脑细胞了,好记性永远比不上烂笔头,为了能节省自己的脑细胞,降低 ...