数据挖掘之聚类算法Apriori总结
项目中有时候需要用到对数据进行关联分析,比如分析一个小商店中顾客购买习惯.
package com.data.algorithm; import com.google.common.base.Splitter;
import com.google.common.collect.Lists;
import com.google.common.collect.Maps;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory; import java.io.BufferedReader;
import java.io.FileInputStream;
import java.io.IOException;
import java.io.InputStreamReader;
import java.util.*; /**
* *********************************************************
* <p/>
* Author: XiJun.Gong
* Date: 2017-01-20 15:06
* Version: default 1.0.0
* Class description:
* <p/>
* *********************************************************
*/ class EOC { private static final Logger logger = LoggerFactory.getLogger(EOC.class);
private Map<String, Integer> fmap; //forward map
private Map<Integer, String> bmap; //backward map
private List<Map<String, Integer>> elements = null; private Integer maxDimension; public EOC(final String pathFile, String separatSeq) { BufferedReader bufferedReader = null;
try {
this.fmap = Maps.newHashMap();
this.bmap = Maps.newHashMap();
this.elements = Lists.newArrayList();
maxDimension = 0;
bufferedReader = new BufferedReader(
new InputStreamReader(
new FileInputStream(pathFile), "UTF-8"));
String _line = null;
Integer keyValue = null, mapIndex = 0;
while ((_line = bufferedReader.readLine()) != null) {
Map<String, Integer> lineMap = Maps.newHashMap();
if (_line.trim().length() > 1) {
if (separatSeq.trim().length() < 1) {
separatSeq = ",";
}
for (String word : Splitter.on(separatSeq).split(_line)) {
word = word.trim();
if (null == (keyValue = fmap.get(word))) {
keyValue = mapIndex++;
}
fmap.put(word, keyValue);
bmap.put(keyValue, word);
lineMap.put(word, keyValue);
}
if (maxDimension < lineMap.size())
maxDimension = lineMap.size();
elements.add(lineMap);
}
}
} catch (Exception e) {
logger.error("读取文件出错 , 错误原因:{}", e);
} finally {
if (bufferedReader != null) {
try {
bufferedReader.close();
} catch (IOException e) {
logger.error("bufferedReader , 错误原因:{}", e);
}
}
}
} public Integer getMaxDimension() {
return maxDimension;
} public float getRateOfSet(Collection<Integer> elementChild) {
float rateCnt = 0f;
int allSize = 1;
for (Map<String, Integer> eMap : elements) {
boolean flag = true;
for (Integer element : elementChild) {
if (null == eMap.get(bmap.get(element))) {
flag = false;
break;
}
}
if (flag) rateCnt += 1;
}
return rateCnt / ((allSize = elements.size()) > 1 ? (float) allSize : 1.0f);
} public Set<Integer> getElements() { return new HashSet<Integer>(fmap.values());
} public Integer queryByKey(String key) {
return fmap.get(key);
} public String queryByValue(Integer value) {
return bmap.get(value);
}
} public class Apriori {
private static final Logger logger = LoggerFactory.getLogger(Apriori.class);
private EOC eoc = null;
private Integer maxDimension;
private final float exp = 1e-4f; public Apriori(final String pathFile, String separatSeq, Integer maxDimension) {
this(pathFile, separatSeq);
this.maxDimension = maxDimension;
} public Apriori(final String pathFile, String separatSeq) {
this.eoc = new EOC(pathFile, separatSeq);
this.maxDimension = this.eoc.getMaxDimension();
} public void work(float confidenceLevel) {
List<Set<Integer>> listElement = null;
ArrayList<Set<Integer>> middleWareElement = null;
Map<Set<Integer>, Float> maps = null;
listElement = Lists.newArrayList();
for (Integer element : this.eoc.getElements()) {
Set<Integer> set = new HashSet<Integer>();
set.add(element);
listElement.add(set);
}
maps = Maps.newHashMap();
middleWareElement = Lists.newArrayList();
for (int i = 1; i < this.maxDimension; i++) {
for (Set<Integer> tmpSet : listElement) {
float rate = eoc.getRateOfSet(tmpSet);
if (confidenceLevel - exp <= rate)
maps.put(tmpSet, rate);
}
System.out.println("+++++++++++第 " + i + " 维度关联数据+++++++++++");
output(maps);
listElement.clear();
middleWareElement.addAll(maps.keySet());
maps.clear();
for (int j = 0; j < middleWareElement.size(); j++) {
Set<Integer> tmpSet = middleWareElement.get(j);
for (int k = j + 1; k < middleWareElement.size(); k++) {
Set<Integer> setChild = middleWareElement.get(k);
for (Integer label : setChild) {
if (!tmpSet.contains(label)) {
Set<Integer> newElement = new HashSet<Integer>(tmpSet);
newElement.add(label);
if (!listElement.contains(newElement)) {
listElement.add(newElement);
break;
}
}
}
}
}
middleWareElement.clear();
}
} public void output(Map<Set<Integer>, Float> maps) {
for (Map.Entry<Set<Integer>, Float> iter : maps.entrySet()) {
for (Integer integer : iter.getKey()) {
System.out.print(eoc.queryByValue(integer) + " ");
}
System.out.println(iter.getValue()*100+"%");
}
}
}
package com.data.algorithm; /**
* *********************************************************
* <p/>
* Author: XiJun.Gong
* Date: 2017-01-17 17:57
* Version: default 1.0.0
* Class description:
* <p/>
* *********************************************************
*/
public class Main {
public static void main(String args[]) {
Apriori apriori = new Apriori("/home/com/src/main/java/com/qunar/data/algorithm/demo.data", ",");
apriori.work(0.5f);
}
}
+++++++++++第 1 维度关联数据+++++++++++
苹果 50.0%
西红柿 75.0%
香蕉 75.0%
矿泉水 75.0%
+++++++++++第 2 维度关联数据+++++++++++
苹果 西红柿 50.0%
西红柿 香蕉 50.0%
西红柿 矿泉水 50.0%
香蕉 矿泉水 75.0%
+++++++++++第 3 维度关联数据+++++++++++
西红柿 香蕉 矿泉水 50.0%
数据挖掘之聚类算法Apriori总结的更多相关文章
- 续前篇---数据挖掘之聚类算法k-mediod(PAM)原理及实现
上一篇博文中介绍了聚类算法中的kmeans算法.无可非议kmeans由于其算法简单加之分类效率较高 已经广泛应用于聚类应用中. 然而kmeans并非十全十美的.其对于数据中的噪声和孤立点的聚类带来的误 ...
- 数据挖掘之聚类算法K-Means总结
序 由于项目需要,需要对数据进行处理,故而又要滚回来看看paper,做点小功课,这篇文章只是简单的总结一下基础的Kmeans算法思想以及实现: 正文: 1.基础Kmeans算法. Kmeans算法的属 ...
- [数据挖掘] - 聚类算法:K-means算法理解及SparkCore实现
聚类算法是机器学习中的一大重要算法,也是我们掌握机器学习的必须算法,下面对聚类算法中的K-means算法做一个简单的描述: 一.概述 K-means算法属于聚类算法中的直接聚类算法.给定一个对象(或记 ...
- 《数据挖掘导论》实验课——实验七、数据挖掘之K-means聚类算法
实验七.数据挖掘之K-means聚类算法 一.实验目的 1. 理解K-means聚类算法的基本原理 2. 学会用python实现K-means算法 二.实验工具 1. Anaconda 2. skle ...
- 数据挖掘十大算法--K-均值聚类算法
一.相异度计算 在正式讨论聚类前,我们要先弄清楚一个问题:怎样定量计算两个可比較元素间的相异度.用通俗的话说.相异度就是两个东西区别有多大.比如人类与章鱼的相异度明显大于人类与黑猩猩的相异度,这是能 ...
- 数据挖掘聚类算法(DBSCAN、Kmeans)Java实现
学习聚类算法时,参考算法说明随手写的java实现,代码很简单,不多做说明啦,有需要的童鞋可以看看,自己也做个备录. http://files.cnblogs.com/files/yuananyun/% ...
- 一步步教你轻松学K-means聚类算法
一步步教你轻松学K-means聚类算法(白宁超 2018年9月13日09:10:33) 导读:k-均值算法(英文:k-means clustering),属于比较常用的算法之一,文本首先介绍聚类的理 ...
- 基于改进人工蜂群算法的K均值聚类算法(附MATLAB版源代码)
其实一直以来也没有准备在园子里发这样的文章,相对来说,算法改进放在园子里还是会稍稍显得格格不入.但是最近邮箱收到的几封邮件让我觉得有必要通过我的博客把过去做过的东西分享出去更给更多需要的人.从论文刊登 ...
- K-means聚类算法
聚类分析(英语:Cluster analysis,亦称为群集分析) K-means也是聚类算法中最简单的一种了,但是里面包含的思想却是不一般.最早我使用并实现这个算法是在学习韩爷爷那本数据挖掘的书中, ...
随机推荐
- C#:MVC引用Log4Net生成错误日志
第一步:引用log4net配置文件 第二步:在自己项目下新建文件夹LogNet,再在里面建立类Log.cs log.cs内容如下: 第三步:在自己项目下新建Log4Net.config Log4Net ...
- The ResourceConfig instance does not contain any root resource classes
问题描述 当我们在使用 myeclipse 创建 Web Service Projects 项目后,运行项目然后就会出现这个问题. 解决方案 通过这个错误描述,我们项目没有找到这个资源.报错的原因在于 ...
- 【python】入门:打印字符串、简单计算
- SQL基本查询_子查询(实验四)
SQL基本查询_子查询(实验四) 1.查询所有员工中薪水低于"孙军"的员工姓名和薪水: 2.查询与部门编号为"01"的岗位相同的员工姓名.岗位.薪水及部门号: ...
- 9.11 test
题面.pdf T1:通过打表发现,从一个点出发只有距离为1,2,3,5,6,9,10,13,17的点才不能到达: 那么我们转移的时候只有距离在20以内才不一定能直接转移,那么我们离散化之后; 对于每一 ...
- CentOS7.4 chrony时间同步服务器部署(替代NTPD)
Chrony是一个开源的自由软件,它能保持系统时钟与时钟服务器(NTP)同步,让时间保持精确. 它由两个程序组成:chronyd和chronyc. chronyd是一个后台运行的守护进程,用于调整内核 ...
- 细谈最近上线的Vue2.0项目(一)
8月初离职,来到现在的新东家负责一个新的项目.而我最近开发的两个webapp一直都是以Vue为主,这也是这篇文章的由来. 正文前的胡侃&一点点吐槽 在经历了两个公司不同的项目后,发现都存在一个 ...
- 跟我一起读postgresql源码(七)——Executor(查询执行模块之——数据定义语句的执行)
1.数据定义语句的执行 数据定义语句(也就是之前我提到的非可优化语句)是一类用于定义数据模式.函数等的功能性语句.不同于元组增删査改的操作,其处理方式是为每一种类型的描述语句调用相应的处理函数. 数据 ...
- Shader 1:能接受阴影的透明shader
第一次接触Shader,项目需要,直接说需求吧,需要一个透明并且能接受阴影的shader.unity系统自带的shader已经满足不了了.上一段代码吧 Shader "GreenArch/T ...
- mysql 数据表字段修改sql 语句
1 新增字段 alter table bulletin add citycode varchar(6) not null default 0 [after `id`]; # 城市代码 2 修改字段 a ...