TensorFlow conv2d原理及实践
tf.nn.conv2d(input, filter, strides, padding, use_cudnn_on_gpu=None, data_format=None, name=None)
官方教程说明:
给定四维的input
和filter
tensor,计算一个二维卷积
Args:
input
: ATensor
. type必须是以下几种类型之一:half
,float32
,float64
.filter
: ATensor
. type和input
必须相同strides
: A list ofints
.一维,长度4, 在input
上切片采样时,每个方向上的滑窗步长,必须和format指定的维度同阶padding
: Astring
from:"SAME", "VALID"
. padding 算法的类型use_cudnn_on_gpu
: An optionalbool
. Defaults toTrue
.data_format
: An optionalstring
from:"NHWC", "NCHW"
, 默认为"NHWC"
。
指定输入输出数据格式,默认格式为"NHWC", 数据按这样的顺序存储:[batch, in_height, in_width, in_channels]
也可以用这种方式:"NCHW", 数据按这样的顺序存储:[batch, in_channels, in_height, in_width]
name
: 操作名,可选.
Returns:
A Tensor
. type与input
相同
Given an input tensor of shape [batch, in_height, in_width, in_channels]
and a filter / kernel tensor of shape[filter_height, filter_width, in_channels, out_channels]
conv2d实际上执行了以下操作:
- 将filter转为二维矩阵,shape为
[filter_height * filter_width * in_channels, output_channels]
. - 从input tensor中提取image patches,每个patch是一个virtual tensor,shape
[batch, out_height, out_width, filter_height * filter_width * in_channels]
. - 将每个filter矩阵和image patch向量相乘
具体来讲,当data_format为NHWC时:
output[b, i, j, k] =
sum_{di, dj, q} input[b, strides[1] * i + di, strides[2] * j + dj, q] *
filter[di, dj, q, k]
input 中的每个patch都作用于filter,每个patch都能获得其他patch对filter的训练
需要满足strides[0] = strides[3] = 1
. 大多数水平步长和垂直步长相同的情况下:strides = [1, stride, stride, 1]
.
下面举例来进行说明
在最基本的例子中,没有padding和stride = 1。让我们假设你的input
和kernel
有:
当您的内核您将收到以下输出:,它按以下方式计算:
- 14 = 4 * 1 + 3 * 0 + 1 * 1 + 2 * 2 + 1 * 1 + 0 * 0 + 1 * 0 + 2 * 0 + 4 * 1
- 6 = 3 * 1 + 1 * 0 + 0 * 1 + 1 * 2 + 0 * 1 + 1 * 0 + 2 * 0 + 4 * 0 + 1 * 1
- 6 = 2 * 1 + 1 * 0 + 0 * 1 + 1 * 2 + 2 * 1 + 4 * 0 + 3 * 0 + 1 * 0 + 0 * 1
- 12 = 1 * 1 + 0 * 0 + 1 * 1 + 2 * 2 + 4 * 1 + 1 * 0 + 1 * 0 + 0 * 0 + 2 * 1
TF的conv2d函数批量计算卷积,并使用稍微不同的格式。对于一个输入,它是[batch, in_height, in_width, in_channels]
内核的[filter_height, filter_width, in_channels, out_channels]
。所以我们需要以正确的格式提供数据:
import tensorflow as tf
k = tf.constant([
[1, 0, 1],
[2, 1, 0],
[0, 0, 1]
], dtype=tf.float32, name='k')
i = tf.constant([
[4, 3, 1, 0],
[2, 1, 0, 1],
[1, 2, 4, 1],
[3, 1, 0, 2]
], dtype=tf.float32, name='i')
kernel = tf.reshape(k, [3, 3, 1, 1], name='kernel')
image = tf.reshape(i, [1, 4, 4, 1], name='image')
之后,卷积用下式计算:
res = tf.squeeze(tf.nn.conv2d(image, kernel, [1, 1, 1, 1], "VALID"))
# VALID means no padding
with tf.Session() as sess:
print sess.run(res)
并将相当于我们手工计算的,输出结果:
[[ 14. 6.]
[ 6. 12.]]
附上一张图:
区别SAME和VALID
VALID
input = tf.Variable(tf.random_normal([1,5,5,5])) filter = tf.Variable(tf.random_normal([3,3,5,1])) op = tf.nn.conv2d(input, filter, strides=[1, 1, 1, 1], padding='VALID')
输出图形:
.....
.xxx.
.xxx.
.xxx.
.....
SAME
input = tf.Variable(tf.random_normal([1,5,5,5]))
filter = tf.Variable(tf.random_normal([3,3,5,1])) op = tf.nn.conv2d(input, filter, strides=[1, 1, 1, 1], padding='SAME')
输出图形:
xxxxx
xxxxx
xxxxx
xxxxx
xxxxx
参考链接
TensorFlow conv2d原理及实践的更多相关文章
- 转:fastText原理及实践(达观数据王江)
http://www.52nlp.cn/fasttext 1条回复 本文首先会介绍一些预备知识,比如softmax.ngram等,然后简单介绍word2vec原理,之后来讲解fastText的原理,并 ...
- 使用腾讯云 GPU 学习深度学习系列之二:Tensorflow 简明原理【转】
转自:https://www.qcloud.com/community/article/598765?fromSource=gwzcw.117333.117333.117333 这是<使用腾讯云 ...
- Atitit 管理原理与实践attilax总结
Atitit 管理原理与实践attilax总结 1. 管理学分类1 2. 我要学的管理学科2 3. 管理学原理2 4. 管理心理学2 5. 现代管理理论与方法2 6. <领导科学与艺术4 7. ...
- Atitit.ide技术原理与实践attilax总结
Atitit.ide技术原理与实践attilax总结 1.1. 语法着色1 1.2. 智能提示1 1.3. 类成员outline..func list1 1.4. 类型推导(type inferenc ...
- Atitit.异步编程技术原理与实践attilax总结
Atitit.异步编程技术原理与实践attilax总结 1. 俩种实现模式 类库方式,以及语言方式,java futuretask ,c# await1 2. 事件(中断)机制1 3. Await 模 ...
- Atitit.软件兼容性原理与实践 v5 qa2.docx
Atitit.软件兼容性原理与实践 v5 qa2.docx 1. Keyword2 2. 提升兼容性的原则2 2.1. What 与how 分离2 2.2. 老人老办法,新人新办法,只新增,少修改 ...
- Atitit 表达式原理 语法分析 原理与实践 解析java的dsl 递归下降是现阶段主流的语法分析方法
Atitit 表达式原理 语法分析 原理与实践 解析java的dsl 递归下降是现阶段主流的语法分析方法 于是我们可以把上面的语法改写成如下形式:1 合并前缀1 语法分析有自上而下和自下而上两种分析 ...
- Atitit.gui api自动化调用技术原理与实践
Atitit.gui api自动化调用技术原理与实践 gui接口实现分类(h5,win gui, paint opengl,,swing,,.net winform,)1 Solu cate1 Sol ...
- Atitit.提升语言可读性原理与实践
Atitit.提升语言可读性原理与实践 表1-1 语言评价标准和影响它们的语言特性1 1.3.1.2 正交性2 1.3.2.2 对抽象的支持3 1.3.2.3 表达性3 .6 语言设计中的权 ...
随机推荐
- React-Native集成到已有项目中的总结
安装Python 从官网下载并安装python 2.7.x(3.x版本不行) 安装node.js 从官网下载node.js的官方V6.X.X版本或更高版本.安装完成后检测是否安装成功:node -v ...
- dedecms后台添加新变量和删除变量的方法
下面由做网站为大家来介绍dedecms后台添加新变量和删除变量的方法 添加新变量是做什么用的?答:可以在模板内调用的东东. 一.进入网站织梦(Dedecms)后台(以dede5.5为例),依次打开系统 ...
- spring非controller类获取service方法
ApplicationContext ctx = new ClassPathXmlApplicationContext("spring.xml"); pushMessageServ ...
- .NET中使用Redis总结
注:关于如何在windows,linux下配置redis,详见这篇文章:) 启动遇到问题 使用命令[redis-server.exe redis.windows.conf],启动redis 服务[如果 ...
- Ubuntu下解决解压zip文件中文文件名乱码问题
在Ubuntu下解压Windows下压缩的zip文件时,会出现解压出的带中文文件名的文件名乱码,这是因为Ubuntu和Windows默认的编码不同,Ubuntu下默认的编码是UTF-8,而Window ...
- [0] C# 扩展方法(Extension Method)
有时有这样的情况,有一个类,你不能修改它,但你又想对它扩展(添加一个方法),这个时候就可以用到扩展方法了.请看下面的例子: using System;using System.Collections. ...
- noip模拟 市长选举
题目描述 利贝尔王国的卢安市因为前段时间的市长被捕事件,导致没有市长管理城市.他们需要一个新的市长. 竞选的人有两位.一位是诺曼,因支持旅游业而受到支持者的拥护.一位是波尔多斯,代表的是卢安的传统行业 ...
- python 标准库 -- shutil
shutil shutil.move(src,dst) shutil.move('/tmp/20170223/new','/tmp/20170223/test') # 移动文件, 重命名等 shuti ...
- python3中socket套接字的编码问题解决
一.TCP 1.tcp服务器创建 #创建服务器 from socket import * from time import ctime #导入ctime HOST = '' #任意主机 PORT = ...
- 微信小程序开发者注册流程
一,首先打开浏览器,搜索微信公众平台 点击进入,此时还没有注册微信小程序开发账号,我们需要点击注册 进入注册页面,会出现四种账号,我们选择小程序账号 然后根据提示就可以进行注册了 注册时,需填写一下个 ...