Bloom filter 是由 Howard Bloom 在 1970 年提出的二进制向量数据结构,它具有很好的空间和时间效率,被用来检测一个元素是不是集合中的一个成员。如果检测结果为是,该元素不一定在集合中;但如果检测结果为否,该元素一定不在集合中。因此Bloom filter具有100%的召回率。这样每个检测请求返回有“在集合内(可能错误)”和“不在集合内(绝对不在集合内)”两种情况,可见 Bloom filter 是牺牲了正确率和时间以节省空间。

优缺点

Bloom filter 优点就是它的插入和查询时间都是常数,另外它查询元素却不保存元素本身,具有良好的安全性。它的缺点也是显而易见的,当插入的元素越多,错判“在集合内”的概率就越大了,另外 Bloom filter 也不能删除一个元素,因为多个元素哈希的结果可能在 Bloom filter 结构中占用的是同一个位,如果删除了一个比特位,可能会影响多个元素的检测。

BitMap 与 BloomFilter 的区别

BloomFilter 算法其实是在 BitMap 算法的基础上用多个哈希函数进行哈希,以此来降低发生误判(哈希冲突)的几率,但是从理论上来说还不能 100% 正确判断。BitMap 算法只要哈希值所对应的下标为 1 就认为已经重复了,但是 BloomFilter 则必须要多个哈希值所对应的下标为 1 才认为是存在了。

BitMap 与 BloomFilter 可能产生的误差

BitMap 与 BloomFilter 都用来检测重复。从另一个角度想,也就是来检测是否包含某一元素。BitMap 和 BloomFilter 产生误差的来源主要是来源于哈希碰撞。当数组下标修改的值越来越多,BitMap 算法和 BloomFilter 算法发生误判的可能性越大。

下面是一个简单的 Bloom filter 结构,开始时集合内没有元素

当来了一个元素 a,进行判断,这里哈希函数有两个,计算出对应的比特位上为 0 ,即是 a 不在集合内,将 a 添加进去:

之后的元素,要判断是不是在集合内,也是同 a 一样的方法,只有对元素哈希后对应位置上都是 1 才认为这个元素在集合内(虽然这样可能会误判):

随着元素的插入,Bloom filter 中修改的值变多,出现误判的几率也随之变大,当新来一个元素时,满足其在集合内的条件,即所有对应位都是 1 ,这样就可能有两种情况,一是这个元素就在集合内,没有发生误判;还有一种情况就是发生误判,出现了哈希碰撞,这个元素本不在集合内。

可以说出现误判的几率是:哈希碰撞的几率 + 出现在值为 1 的位置上的几率。上面出现在值为 1 上的概率是 3/7,假设发生哈希碰撞的几率是 1/100,那么发生误判的几率就是:3/700。

1、Bloom Filter_百度百科

2、解释 BloomFilter 的一篇很好的博文

BloomFilter算法的更多相关文章

  1. 基于Redis的BloomFilter算法去重

    BloomFilter算法及其适用场景 BloomFilter是利用类似位图或者位集合数据结构来存储数据,利用位数组来简洁的表示一个集合,并且能够快速的判断一个元素是不是已经存在于这个集合.因为基于H ...

  2. 解读BloomFilter算法(转载)

    1.介绍 BloomFilter(布隆过滤器)是一种可以高效地判断元素是否在某个集合中的算法. 在很多日常场景中,都大量存在着布隆过滤器的应用.例如:检查单词是否拼写正确.网络爬虫的URL去重.黑名单 ...

  3. 海量数据处理之布隆过滤器BloomFilter算法

    Bloom Filter是由Bloom在1970年提出的一种多哈希函数映射的快速查找算法.通常应用在一些需要快速判断某个元素是否属于集合,但是并不严格要求100%正确的场合.使用场景:数据量为100亿 ...

  4. 布隆算法(BloomFilter)

          BloomFilter算法,是一种大数据排重算法.在一个数据量很大的集合里,能准确断定一个对象不在集合里:判断一个对象有可能在集合里,而且占用的空间不大.它不适合那种要求准确率很高的情况, ...

  5. 海量数据处理算法—Bloom Filter

    海量数据处理算法—Bloom Filter 1. Bloom-Filter算法简介 Bloom-Filter,即布隆过滤器,1970年由Bloom中提出.它可以用于检索一个元素是否在一个集合中. Bl ...

  6. 大数据处理算法--Bloom Filter布隆过滤

    1. Bloom-Filter算法简介 Bloom-Filter,即布隆过滤器,1970年由Bloom中提出.它可以用于检索一个元素是否在一个集合中. Bloom Filter(BF)是一种空间效率很 ...

  7. [转载]基于Redis的Bloomfilter去重(附Python代码)

    前言: “去重”是日常工作中会经常用到的一项技能,在爬虫领域更是常用,并且规模一般都比较大.去重需要考虑两个点:去重的数据量.去重速度.为了保持较快的去重速度,一般选择在内存中进行去重. 数据量不大时 ...

  8. 笔记-爬虫-去重/bloomfilter

    笔记-爬虫-去重/bloomfilter 1.      去重 为什么要去重? 页面重复:爬的多了,总会有重复的页面,对已爬过的页面肯定不愿意再爬一次. 页面更新:很多页面是会更新的,爬取这种页面时就 ...

  9. 基于Redis的Bloomfilter去重(转载)

    转载:http://blog.csdn.net/bone_ace/article/details/53107018 前言 “去重”是日常工作中会经常用到的一项技能,在爬虫领域更是常用,并且规模一般都比 ...

随机推荐

  1. 各种ORM框架对比(理论篇,欢迎来观摩)

    各种ORM框架对比 目前框架有以下 PetaPoco Dapper.NET Massive Simple.Data Chain PetaPoco 轻量级,以前单文件,目前有维护形成项目级别,适合多个数 ...

  2. JS高级程序设计学习笔记——继承

    我们知道,在OO语言中,继承可分为接口继承和实现继承.而ECMAScript的函数没有签名,不能实现“接口继承”,只能通过原型链实现“实现继承”. 在学习了各种继承模式之后,简单总结一下各种继承模式的 ...

  3. Javascript基本语句

    1.单行语句是大家用的最多的,下面讲讲复合语句的用法. 用一对花括号括起来,处理的时候,可以用单句来对待.这样做的好处是避免复合语句中语句互相干扰执行. 语法如下: { var x=1111: var ...

  4. 前端项目经验总结之js防缓存(避免缓存的影响)

    一.问题描述:打包后的h5项目中有个server.js文件夹,这个文件夹有些时候用户更新了h5,但是加载的还是旧的server.js,所以怀疑是缓存的问题,为了避免缓存的影响所以要给server.js ...

  5. InstallShield打包

    使用2010部分汉化版(2010之后找不到更新的破解版本),主要用于打包桌面应用程序. 主要步骤: 1.3种主要的工程类型: Basic MSI,安装脚本不易使用. InstallScript,无法加 ...

  6. VS2012 百度云下载 开发工具

    百度云下载地址:链接: http://pan.baidu.com/s/1qWDIDPi密码: 5nr0 ASP.NET MVC4.0+ WebAPI+EasyUI+KnockOutJS快速开发框架 通 ...

  7. 服务器数据库搭建流程(CentOs+mysql)

    前言: 服务器上数据库搭建需要知道Linux系统的版本,以前的Ubuntu14.04直接在终端下输入apt-get install (package)便可方便的下载并安装mysql,但是在centOs ...

  8. Java面试系列

    如果你的面试简历是如下这样写的,请务必准备回答下面的所有问题. 面试职位:Java高级工程师 专业技能: (1)牢固掌握Java基础知识,如集合.并发.I/O等,并对Java源码有一定的研究. (2) ...

  9. Java面试14|Session与Cookie

    1.在分布式环境,管理Session通常使用下面三种方式: (1)Session Replication 方式管理 (即session复制) 将一台机器上的Session数据广播复制到集群中其余机器上 ...

  10. 需要接入的SDK包,一定要用最新版,否则后果很严重

    ios8更新后,原来的静态库不支持.导致一个bug连续测试好多天都没结果.