Machine Learning and Data Mining Lecture 1

1. The learning problem - Outline

    1.1 Example of machine learning

  Predicting how a viewer will rate a moive?

  10% improvement = 1 million dollar prize

The essence of machine learning:

A pattern exists

We cannot pin it down mathematically

We have data

The following method is not machine learning.

When you tag viewer from different perspective(attributes) and predict other viewer with the similar attributes,it's not machine learning.

 Components of learning

Formalization:

  Input: x (customer application)

Output: y (good/bad customer)

Target Function: f: x->y (ideal credit approval formula)

Data:(x1,y1),(x2,y2),(x3,y4),.....,(xn,yn)

Hypothesis:  g: x->y

 Supervised Learning

  Example from vending machines - coin recogniztion.

The input data can be classify.

Unsupervised Learning

  There are the data and good luck try to predict the credit.

For example, when you learning a foreign language, you have no other resource to learn , what you have is the radio . So

you listen it everyday even though you don't understand it. but eventually,your brain will build a model in your head.

when you have a teacher to teach you the foreign language, you will be able to learning that foreign language much faster.

Reinforcement Learning

we get(input, some output, grade for the output)

1.2 Components of Learning

1.3 A simple model

1.4 Types of learning

1.5 Puzzle

Machine Learning and Data Mining Lecture 1的更多相关文章

  1. How do you explain Machine Learning and Data Mining to non Computer Science people?

    How do you explain Machine Learning and Data Mining to non Computer Science people?   Pararth Shah, ...

  2. Note for video Machine Learning and Data Mining——Linear Model

    Here is the note for lecture three. the linear model Linear model is a basic and important model in ...

  3. Machine Learning and Data Mining(机器学习与数据挖掘)

    Problems[show] Classification Clustering Regression Anomaly detection Association rules Reinforcemen ...

  4. Note for video Machine Learning and Data Mining——training vs Testing

    Here is the note for lecture five. There will be several points  1. Training and Testing  Both of th ...

  5. Machine Learning and Data Science 教授大师

    http://www.cs.cmu.edu/~avrim/courses.html Foundations of Data Science Avrim Blum, www.cs.cornell.edu ...

  6. Machine Learning、Date Mining、IR&NLP 会议期刊论文推荐

    核心期刊排名查询 http://portal.core.edu.au/conf-ranks/ http://portal.core.edu.au/jnl-ranks/ 1.机器学习推荐会议 ICML— ...

  7. How do I learn machine learning?

    https://www.quora.com/How-do-I-learn-machine-learning-1?redirected_qid=6578644   How Can I Learn X? ...

  8. How to use data analysis for machine learning (example, part 1)

    In my last article, I stated that for practitioners (as opposed to theorists), the real prerequisite ...

  9. (转)8 Tactics to Combat Imbalanced Classes in Your Machine Learning Dataset

    8 Tactics to Combat Imbalanced Classes in Your Machine Learning Dataset by Jason Brownlee on August ...

随机推荐

  1. 基于TypeScript的FineUIMvc组件式开发(概述)

    WebForm与Mvc 我简单说一下WebForm与Mvc,WebForm是微软很早就推出的一种WEB开发架构,微软对其进行了大量的封装,使开发人员可以像开发桌面程序一样去开发WEB程序,虽然开发效率 ...

  2. pc网页到移动端怎么自动加载适应移动端的css。

    1.通过link标签判断加入 以前听说过在link标签中加media = "handheld",但这个用到安卓或苹果都不管用,后来尝试以下方法,是管用的. <link hre ...

  3. Java web中常见编码乱码问题(二)

    根据上篇记录Java web中常见编码乱码问题(一), 接着记录乱码案例: 案例分析:   2.输出流写入内容或者输入流读取内容时乱码(内容中有中文) 原因分析: a. 如果是按字节写入或读取时乱码, ...

  4. nodejs实战:使用原生nodeJs模块实现静态文件及REST请求解析及响应(基于nodejs6.2.0版本,不使用express等webMVC框架 )

    一.准备工作 1.安装nodejs 首先你需要安装nodeJs 那么nodejs官网:http://nodejs.cn/,下载相应版本,一步一步安装. 二.使用nodejs开发服务器后台应用 1.创建 ...

  5. 后台开发之IO缓冲区管理

    Linux系统IO中write原型为  ssize_t write(int  filedes, const void * buff, size_t nbytes) ; 当调用write写数据的时候,调 ...

  6. .NET和JAVA 反射对比

    反射是一个程序集发现及运行的过程,通过反射可以得到*.exe或*.dll等程序集内部的信息.使用反射可以看到一个程序集内部的接口.类.方法.字段.属性.特性等等信息.在System.Reflectio ...

  7. [0] 解决版本冲突-使用SVN主干与分支功能

    解决版本冲突-使用SVN主干与分支功能 1  前言 大多数产品开发存在这样一个生命周期:编码.测试.发布,然后不断重复.通常是这样的开发步骤: 1)    开发人员开发完毕某一版本(如版本A)功能后, ...

  8. ffmpeg最全的命令参数

    Hyper fast Audio and Video encoderusage: ffmpeg [options] [[infile options] -i infile]... {[outfile ...

  9. JAVAEE——spring01:介绍、搭建、概念、配置详解、属性注入和应用到项目

    一.spring介绍 1.三层架构中spring位置 2.spring一站式框架 正是因为spring框架性质是属于容器性质的. 容器中装什么对象就有什么功能.所以可以一站式. 不仅不排斥其他框架,还 ...

  10. 用 Google 挖掘赚钱思路

    为程序员,如果学了一堆技术却没有用武之地,实在可惜,如何把自己积累的技术利用起来?通俗一点,程序员有哪些赚钱的门路? 比较常见的一种方式是接私活,不过私活的复杂度不一,沟通成本会非常高,另一方面,私活 ...