混合拉普拉斯分布(LMM)推导及实现
作者:桂。
时间:2017-03-21 07:25:17
链接:http://www.cnblogs.com/xingshansi/p/6592599.html
声明:欢迎被转载,不过记得注明出处哦~
前言
本文为曲线拟合与分布拟合系列的一部分,主要讲解混合拉普拉斯分布(Laplace Mixture Model,LMM)。拉普拉斯也是常用的统计概率模型之一,网上关于混合高斯模型(GMM)的例子很多,而关于LMM实现的很少。其实混合模型都可以用EM算法推导,只是求闭式解的运算上略有差别,全文包括:
1)LMM理论推导;
2)LMM代码实现;
内容多有借鉴他人,最后一并附上链接。
一、LMM理论推导
A-模型介绍
对于单个拉普拉斯分布,表达式为:
$f(Y) = \frac{1}{{2b}}{e^{ - \frac{{\left| {Y - \mu } \right|}}{b}}}$
对于$K$个模型的混合分布:
$P\left( {{Y_j}|\Theta } \right) = \sum\limits_{k = 1}^K {{w_k}f\left( {{Y_j}|{\mu _k},{b_k}} \right)} $
如何拟合呢?下面利用EM分析迭代公式,仅分析Y为一维的情况,其他可类推。(先给出一个结果图)
B-EM算法推导
E-Step:
1)求解隐变量,构造完全数据集
同GMM推导类似,利用全概率公式:
2)构造Q函数
基于之前混合高斯模型(GMM)的讨论,EM算法下混合模型的Q函数可以表示为:
$Q\left( {\Theta ,{\Theta ^{\left( i \right)}}} \right) = \sum\limits_{j = 1}^N {\sum\limits_{k = 1}^K {\log \left( {{w_k}} \right)P\left( {{Z_j} \in {\Upsilon _k}|{Y_j},{\Theta ^{\left( i \right)}}} \right)} } + \sum\limits_{j = 1}^N {\sum\limits_{k = 1}^K {\log \left( {{f_k}\left( {{Y_j}|{Z_j} \in {\Upsilon _k},{\theta _k}} \right)} \right)} } P\left( {{Z_j} \in {\Upsilon _k}|{Y_j},{\Theta ^{\left( i \right)}}} \right)$
其中${{\theta _k}} = [\mu_k,b_k]$为分布$k$对应的参数,$\Theta$ = {$\theta _1$,$\theta _2$,...,$\theta _K$}为参数集合,$N$为样本个数,$K$为混合模型个数。
M-Step:
1)MLE求参
- 首先对${{w_k}}$进行优化
由于$\sum\limits_{k = 1}^M {{w_k}} = 1$,利用Lagrange乘子求解:
${J_w} = \sum\limits_{j = 1}^N {\sum\limits_{k = 1}^K {\left[ {\log \left( {{w_k}} \right)P\left( {\left. {{Z_j} \in {\Upsilon _k}} \right|{Y_j},{{\bf{\Theta }}^{\left( i \right)}}} \right)} \right]} } + \lambda \left[ {\sum\limits_{k = 1}^K {{w_k}} - 1} \right]$
求偏导:
$\frac{{\partial {J_w}}}{{\partial {w_k}}} = \sum\limits_{J = 1}^N {\left[ {\frac{1}{{{w_k}}}P\left( {{Z_j} \in {\Upsilon _k}|{Y_j},{{\bf{\Theta }}^{\left( i \right)}}} \right)} \right] + } \lambda = 0$
得
- 对各分布内部参数$\theta_k$进行优化
给出准则函数:
${J_\Theta } = \sum\limits_{j = 1}^N {\sum\limits_{k = 1}^K {\log \left( {{f_k}\left( {{Y_j}|{Z_j} \in {\Upsilon _k},{\theta _k}} \right)} \right)} } P\left( {{Z_j} \in {\Upsilon _k}|{Y_j},{\Theta ^{\left( i \right)}}} \right)$
仅讨论$Y_j$为一维数据情况,其他类推。对于拉普拉斯分布:
关于$\theta_k$利用MLE即可求参。
首先求解$b_k$的迭代公式:
由于$\mu_k$含有绝对值,因此需要一点小技巧。${J_\Theta }$对$\mu_k$求偏导,得到:
得到的$\mu_k$估计即为:
$\mu _k^{\left( {i + 1} \right)} = {{\hat \mu }_k}$
在迭代的最终状态,可以认为$i$次参数与$i+1$次参数近似相等,从而上面的求导结果转化为:
得到参数$\mu_k$的迭代公式:
总结一下LMM的求解步骤:
E-Step:
M-Step:
二、LMM代码实现
根据上一篇GMM的代码,简单改几行code,即可得到LMM:
function [u,b,t,iter] = fit_mix_laplace( X,M ) % % fit_mix_laplace - fit parameters for a mixed-laplacian distribution using EM algorithm % % format: [u,b,t,iter] = fit_mix_laplacian( X,M ) % % input: X - input samples, Nx1 vector % M - number of gaussians which are assumed to compose the distribution % % output: u - fitted mean for each laplacian % b - fitted standard deviation for each laplacian % t - probability of each laplacian in the complete distribution % iter- number of iterations done by the function % N = length( X ); Z = ones(N,M) * 1/M; % indicators vector P = zeros(N,M); % probabilities vector for each sample and each model t = ones(1,M) * 1/M; % distribution of the gaussian models in the samples u = linspace(0.2,1.4,M); % mean vector b = ones(1,M) * var(X) / sqrt(M); % variance vector C = 1/sqrt(2*pi); % just a constant Ic = ones(N,1); % - enable a row replication by the * operator Ir = ones(1,M); % - enable a column replication by the * operator Q = zeros(N,M); % user variable to determine when we have converged to a steady solution thresh = 1e-7; step = N; last_step = 300; % step/last_step iter = 0; min_iter = 3000; while ((( abs((step/last_step)-1) > thresh) & (step>(N*1e-10)) ) & (iter<min_iter) ) % E step % ======== Q = Z; P = 1./ (Ic*b) .* exp( -(1e-6+abs(X*Ir - Ic*u))./(Ic*b) ); for m = 1:M Z(:,m) = (P(:,m)*t(m))./(P*t(:)); end % estimate convergence step size and update iteration number prog_text = sprintf(repmat( '\b',1,(iter>0)*12+ceil(log10(iter+1)) )); iter = iter + 1; last_step = step * (1 + eps) + eps; step = sum(sum(abs(Q-Z))); fprintf( '%s%d iterations\n',prog_text,iter ); % M step % ======== Zm = sum(Z); % sum each column Zm(find(Zm==0)) = eps; % avoid devision by zero u = sum(((X*Ir)./abs(X*Ir - Ic*u)).*Z) ./sum(1./abs(X*Ir - Ic*u).*Z) ; b = sum((abs(X*Ir - Ic*u)).*Z) ./ Zm ; t = Zm/N; end end
给出上文统计分布的拟合程序:
clc;clear all; %generate random xmin = -10; xmax = 10; Len = 10000000; x = linspace(xmin,xmax,Len); mu = [3,-4]; b = [0.9 0.4]; w = [0.7 0.3]; fx = w(1)/2/b(1)*exp(-abs(x-mu(1))/b(1))+ w(2)/2/b(2)*exp(-abs(x-mu(2))/b(2)); ymax = 1/b(2); ymin = 0; Y = (ymax-ymin)*rand(1,Len)-ymin; data = x(Y<=fx); %Laplace Mixture Model fitting K = 2; [mu_new,b_new,w_new,iter] = fit_mix_laplace( data',K); %figure subplot 221 hist(data,2000); grid on; subplot 222 numter = [xmin:.2:xmax]; plot(numter,w_new(1)/2/b_new(1)*exp(-abs(numter-mu_new(1))/b_new(1)),'r','linewidth',2);hold on; plot(numter,w_new(2)/2/b_new(2)*exp(-abs(numter-mu_new(2))/b_new(2)),'g','linewidth',2);hold on; subplot (2,2,[3,4]) [histFreq, histXout] = hist(data, numter); binWidth = histXout(2)-histXout(1); %Bar bar(histXout, histFreq/binWidth/sum(histFreq)); hold on;grid on; plot(numter,w_new(1)/2/b_new(1)*exp(-abs(numter-mu_new(1))/b_new(1)),'r','linewidth',2);hold on; plot(numter,w_new(2)/2/b_new(2)*exp(-abs(numter-mu_new(2))/b_new(2)),'g','linewidth',2);hold on;
对应结果图(与上文同):
参考
- Mitianoudis N, Stathaki T. Batch and online underdetermined source separation using Laplacian mixture models[J]. IEEE Transactions on Audio, Speech, and Language Processing, 2007, 15(6): 1818-1832.
混合拉普拉斯分布(LMM)推导及实现的更多相关文章
- 【RS】Sparse Probabilistic Matrix Factorization by Laplace Distribution for Collaborative Filtering - 基于拉普拉斯分布的稀疏概率矩阵分解协同过滤
[论文标题]Sparse Probabilistic Matrix Factorization by Laplace Distribution for Collaborative Filtering ...
- 拉普拉斯分布(Laplace distribution)
拉普拉斯分布的定义与基本性质 其分布函数为 分布函数图 其概率密度函数为 密度函数图 拉普拉斯分布与正太分布的比较 从图中可以直观的发现拉普拉斯分布跟正太分布很相似,但是拉普拉斯分布比正太分布有尖的峰 ...
- 拉普拉斯分布,高斯分布,L1 L2
之前那篇文章里提到,L1其实是加上服从拉普拉斯分布的先验,L2是加上服从高斯分布的先验: http://www.cnblogs.com/charlesblc/p/7977732.html 那么记住拉普 ...
- 混合高斯模型(GMM)推导及实现
作者:桂. 时间:2017-03-20 06:20:54 链接:http://www.cnblogs.com/xingshansi/p/6584555.html 声明:欢迎被转载,不过记得注明出处哦 ...
- 拉普拉斯(Laplace)分布
Laplace分布的概率密度函数的形式是这样的: $p(x) = \frac{1}{2 \lambda} e^{-\frac{\vert x –\mu \vert}{\lambda}}$ 一般$\ ...
- 记录:EM 算法估计混合高斯模型参数
当概率模型依赖于无法观测的隐性变量时,使用普通的极大似然估计法无法估计出概率模型中参数.此时需要利用优化的极大似然估计:EM算法. 在这里我只是想要使用这个EM算法估计混合高斯模型中的参数.由于直观原 ...
- 极大既然估计和高斯分布推导最小二乘、LASSO、Ridge回归
最小二乘法可以从Cost/Loss function角度去想,这是统计(机器)学习里面一个重要概念,一般建立模型就是让loss function最小,而最小二乘法可以认为是 loss function ...
- PLSA的EM推导
本文作为em算法在图模型中的一个应用,推导plsa的em算法. 1 em算法 em算法是解决一类带有隐变量模型的参数估计问题. 1.1 模型的定义 输入样本为,对应的隐变量为.待估计的模型参数为,目标 ...
- Lasso回归的坐标下降法推导
目标函数 Lasso相当于带有L1正则化项的线性回归.先看下目标函数:RSS(w)+λ∥w∥1=∑Ni=0(yi−∑Dj=0wjhj(xi))2+λ∑Dj=0∣wj∣RSS(w)+λ∥w∥1=∑i=0 ...
随机推荐
- spring-mvc.xml配置
1.自动扫描 <!-- 自动扫描该包,使SpringMVC认为包下用了@controller注解的类是控制器 --> <context:component-scan base-pac ...
- C++编程练习(2)----“实现简单的线性表的链式存储结构“
单链表采用链式存储结构,用一组任意的存储单元存放线性表的元素. 对于查找操作,单链表的时间复杂度为O(n). 对于插入和删除操作,单链表在确定位置后,插入和删除时间仅为O(1). 单链表不需要分配存储 ...
- 使用C#读写ini配置文件
INI就是扩展名为"INI"的文件,其实他本身是个文本文件,可以用记事本打工,主要存放的是用户所做的选择或系统的各种参数. INI文件其实并不是普通的文本文件.它有自己的结构.由若 ...
- C语言 extern学习2 分析
上一篇文章中,通过头文件声明,而调用有一个特别大的漏洞: 为什么编译器可以链接过来呢,因为默认是extern修饰的,这种类似全局作用域的功能使其可以被调用 继续加强学习: 这一次有两对C文件: fir ...
- java类初始化,使用构造方法
public class test { /** * java类的初步学习: * 学会使用和类名相同的两种构造方法,对公共类方法的调用: */ public static void main(Str ...
- html5表单和伪类
type = "email"; 自带验证格式type = "url"; 网址 http//:type = "tel";移动端会变成数字键盘t ...
- C#委托简介
C#中委托是一种引用类型,该引用类型与其他引用类型不同,在委托对象的引用中存放的不是对数据的引用而是存放对方法的引用,即委托的内部包含一个指向某个方法的指针.通过使用委托把方法的引用封装在委托对象中, ...
- [Hadoop] - 自定义Mapreduce InputFormat&OutputFormat
在MR程序的开发过程中,经常会遇到输入数据不是HDFS或者数据输出目的地不是HDFS的,MapReduce的设计已经考虑到这种情况,它为我们提供了两个组建,只需要我们自定义适合的InputFormat ...
- devexpress实现单元格合并以及依据条件合并单元格
1.devexpress实现单元格合并非常的简单,只要设置属性[AllowCellMerge=True]就可以了,实现效果如下图: 2.但是在具体要求中并非需要所有的相同单元格都合并,可能需要其他的条 ...
- java学习笔记——IO流部分
IO流常用的有:字符流.字节流.缓冲流.序列化.RandomAccessFile类等,以上列出的都是开发中比较常用的. 1.字节流: 字节流包含:FileInputStream/FileOutputS ...