ROC是一个曲线,AUC是曲线下面的面积值。

 
ROC曲线是FPR和TPR的点连成的线。
可以从上面的图看到,横轴是FPR, 纵轴是TPR (TPR = TP / (TP + FN);FPR = FP / (FP + TN))
ROC曲线如果想要理解的话,要关注四点一线:
1) (0,1)点:FPR==0,TPR==1 -->代表最好的一种情况,即所有的正例都被正确预测了,并且,没有负例被错认为正例。 
2) (1,0)点:--> 代表最差的一种情况,所有的正例都看错了。
3) (0,0)点: --> 分类器将所有的样本都认为是负样本。
4) (1,1)点: --> 分类器将所有的样本都认为是正样本。
5) y=x曲线:  --> 随机猜测出来可得这样一个曲线。 
形象的理解一下:
1) 商品推荐:重在覆盖度,所以更加注重True Positive的高,这个越高越好。False Positive这个不那么低也可以接受。
2) 嫌犯预测:重在准确,更加注重False Positive的低。

 
PR曲线是准确率和召回率的点连成的线。
可以看到,左边的图是ROC曲线,右边的图是PR曲线。
ROC曲线,越左上凸越好; 因为这个ROC想要True Positive高,False Positive小。
PR曲线,越右上凸越好。 PR想要Recall和Precision同时高。
 

当样本分布极不均衡的时候,哪个曲线表现的更好呢?
先看两个公式:
1) TPR = TP / (TP + FN);
2) FPR = FP / (FP + TN)
在ROC曲线中,这两个指标构成了最后的曲线。
如果,样本极不均衡。这里假设,正样本非常少,负样本非常多。
如果是这样的话,则TN会非常大,将FPR拉低,最后的曲线会表现的非常好。
 
这时候,再看看PR曲线,也许这个曲线就没有表现的那么好。
所以,有的时候,光看一个曲线是不能完全覆盖所有的情况的。
 
 

如何画ROC曲线?
如上图所示,假如我有20个测试样本,将预测的概率由大到小排列一下。
然后,分别用这个score作为阈值,大于0.9的作为正类,小于0.9的作为负类,这样的话,就有20组TP,FN等的值了。
这样就可以画出来一个曲线。
 
如果曲线不是特别平滑的话,那么很可能存在过拟合的情况。
 
 

ROC和AUC的区别的更多相关文章

  1. 查全率(Recall),查准率(Precision),灵敏性(Sensitivity),特异性(Specificity),F1,PR曲线,ROC,AUC的应用场景

    之前介绍了这么多分类模型的性能评价指标(<分类模型的性能评价指标(Classification Model Performance Evaluation Metric)>),那么到底应该选 ...

  2. 机器学习-Confusion Matrix混淆矩阵、ROC、AUC

    本文整理了关于机器学习分类问题的评价指标——Confusion Matrix.ROC.AUC的概念以及理解. 混淆矩阵 在机器学习领域中,混淆矩阵(confusion matrix)是一种评价分类模型 ...

  3. ROC和AUC介绍以及如何计算AUC ---好!!!!

    from:https://www.douban.com/note/284051363/?type=like 原帖发表在我的博客:http://alexkong.net/2013/06/introduc ...

  4. Area Under roc Curve(AUC)

    AUC是一种用来度量分类模型好坏的一个标准. ROC分析是从医疗分析领域引入了一种新的分类模型performance评判方法. ROC的全名叫做Receiver Operating Character ...

  5. 【转】ROC和AUC介绍以及如何计算AUC

    转自:https://www.douban.com/note/284051363/ ROC(Receiver Operating Characteristic)曲线和AUC常被用来评价一个二值分类器( ...

  6. ROC和AUC介绍以及如何计算AUC

    原文:http://alexkong.net/2013/06/introduction-to-auc-and-roc/ 为什么使用ROC曲线 既然已经这么多评价标准,为什么还要使用ROC和AUC呢?因 ...

  7. ROC和AUC理解

    一. ROC曲线概念 二分类问题在机器学习中是一个很常见的问题,经常会用到.ROC (Receiver Operating Characteristic) 曲线和 AUC (Area Under th ...

  8. 信息检索(IR)的评价指标介绍 - 准确率、召回率、F1、mAP、ROC、AUC

    原文地址:http://blog.csdn.net/pkueecser/article/details/8229166 在信息检索.分类体系中,有一系列的指标,搞清楚这些指标对于评价检索和分类性能非常 ...

  9. 评估分类器性能的度量,像混淆矩阵、ROC、AUC等

    评估分类器性能的度量,像混淆矩阵.ROC.AUC等 内容概要¶ 模型评估的目的及一般评估流程 分类准确率的用处及其限制 混淆矩阵(confusion matrix)是如何表示一个分类器的性能 混淆矩阵 ...

随机推荐

  1. Ubuntu开启ApacheRewrite功能

    参考原文   :  http://www.knowsky.com/888354.html 1.安装好apache2之后,手动命令启用 执行加载Rewrite模块: a2enmod rewrite 执行 ...

  2. SQL注入详解

    SQL是一种将SQL代码添加到输入参数中,传递到SQL服务器解析并执行的一种攻击手段 产生的原因 web开发人员无法保证所有输入都已经安全过滤 攻击者利用发送给SQL服务器的输入数据,构造可执行的SQ ...

  3. JavaScript 数组基本操作

    简介 数组操作无论是在JavaScript中还是在其他语言中都是很常见.经常会用到的,现在我把JavaScript 数组基本操作整理一下,供大家参考学习.里边包含我自己的见解以及案例,希望能够帮助大家 ...

  4. 几种文件查找命令,whereis ,find ,locate.

    whereis对于文件的查找,是将系统内的所有文件放在一个数据库文件里.whereis 和 locate 都是以该数据库为准的(由于每个数据库会有一个更新时间,一般在更新时间之后才可以找到).而fin ...

  5. NLP论文泛读之《教材在线评论的情感倾向性分析》

    NLP论文泛读之<教材在线评论的情感倾向性分析> 本文借助细粒度情感分类技术, 对从网络上抓取大量计算机专业本科教材的评价文本进行情感极性 分析, 从而辅助商家和出版社改进教材的质量.制定 ...

  6. mysql数据库第一弹

    mysql(一) sql语句 sql是Structured Query Language(结构化查询语言)的缩写.SQL是专为数据库而建立的操作命令集,是一种功能齐全的数据库语言. 在使用它时,只需要 ...

  7. Python的路径引用

    1.以HOME目录为准,进行跳转 sys.path.append(os.path.dirname(__file__) + os.sep + '../') from config import swor ...

  8. 照虎画猫写自己的Spring

    从细节跳出来 看了部分Spring的代码,前面用了四篇内容写了一些读书笔记. 回想起来,论复杂度,Spring够喝上好几壶的.他就像一颗枝繁叶茂的大树,远处看,只是一片绿:走近看,他为你撑起一片小天地 ...

  9. Kaggle实战之一回归问题

    0. 前言 1.任务描述 2.数据概览 3. 数据准备 4. 模型训练 5. kaggle实战 0. 前言 "尽管新技术新算法层出不穷,但是掌握好基础算法就能解决手头 90% 的机器学习问题 ...

  10. 我从.net转到java的心得和体会

    前言:由于有不少人咨询过我如果从.net转java,有什么技巧吗,我现在就分享我从.net转java的历程,这里不涉及两门语言的比较,记录的都是我个人的观点. 一:从.net转java的初衷 我是20 ...