怎样学好哲学(lucas+费马小定理)
怎样学习哲学
时间限制: 1 Sec 内存限制: 128 MB
提交: 97 解决: 27
[提交][状态][讨论版]
题目描述
长者回答:“你啊,Too Young Too Simple,Sometimes Naive!哲学这种东西,不是说想懂就能懂的,需要静心撕烤。你去后面的森林里好好想想。”
输入
输出
样例输入
2 3
3 4
样例输出
提示
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<cmath>
#include<iostream>
#define mod 1000003
#define ll long long
#define Q 2007
using namespace std; int n,m,q;
ll p[mod+],inv[mod+],dp[Q];
struct Node
{
int x,y;
}a[Q]; bool cmp(Node x,Node y)
{
return x.x<y.x;
}
ll ksm(ll a,ll b)
{
ll ans=;
while (b)
{
if (b&) ans=a*ans%mod;
b/=;
a=a*a%mod;
}
return ans;
}
ll Lucas_C(int n,int m)
{
if (n<m) return ;
if (m==) return ;
if (n==m) return ;
if (n<mod) return p[n]*inv[m]%mod*inv[n-m]%mod;
else return Lucas_C(n%mod,m%mod)*Lucas_C(n/mod,m/mod)%mod;
}
int main()
{
p[]=;
for (int i=;i<=mod;i++)
p[i]=(p[i-]*i)%mod;
for (int i=;i<=mod;i++)
inv[i]=ksm(p[i],mod-);
scanf("%d%d%d",&n,&m,&q); for (int i=;i<=q;i++)
scanf("%d%d",&a[i].x,&a[i].y);
q++,a[q].x=n+,a[q].y=m+;
sort(a+,a+q+,cmp);
for (int i=;i<=q;i++)
{
dp[i]=Lucas_C(a[i].y-,a[i].x-);
for (int j=;j<i;j++)
if (a[i].x>a[j].x&&a[i].y>a[j].y)
dp[i]=(dp[i]-dp[j]*Lucas_C(a[i].y-a[j].y-,a[i].x-a[j].x-)%mod+mod)%mod;
}
printf("%lld",dp[q]);
}
怎样学好哲学(lucas+费马小定理)的更多相关文章
- 【BZOJ1951】【SDOI2010】古代猪文 Lucas定理、中国剩余定理、exgcd、费马小定理
Description “在那山的那边海的那边有一群小肥猪.他们活泼又聪明,他们调皮又灵敏.他们自由自在生活在那绿色的大草坪,他们善良勇敢相互都关心……” ——选自猪王国民歌 很久很久以前,在山的那边 ...
- BZOJ.1951.[SDOI2010]古代猪文(费马小定理 Lucas CRT)
题目链接 \(Description\) 给定N,G,求\[G^{\sum_{k|N}C_n^k}\mod\ 999911659\] \(Solution\) 由费马小定理,可以先对次数化简,即求\( ...
- [bzoj1951] [Sdoi2010]古代猪文 费马小定理+Lucas定理+CRT
Description "在那山的那边海的那边有一群小肥猪.他们活泼又聪明,他们调皮又灵敏.他们自由自在生活在那绿色的大草坪,他们善良勇敢相互都关心--" --选自猪王国民歌 很久 ...
- [CodeVs1515]跳(lucas定理+费马小定理)
嘿嘿嘿好久没写数学题了,偶尔看到一道写一写... 题目大意:一个(n+1)*(m+1)[0<=n, m<=10^12,n*m<=10^12]的矩阵,C(0,0)=1,C(x,y)=C ...
- 【bzoj1951】[Sdoi2010]古代猪文 费马小定理+Lucas定理+中国剩余定理
题目描述 求 $g^{\sum\limits_{k|n}C_{n}^{\frac nk}}\mod 999911659$ 输入 有且仅有一行:两个数N.G,用一个空格分开. 输出 有且仅有一行:一个 ...
- bzoj 1951 lucas crt 费马小定理
首先假设输入的是n,m 我们就是要求m^(Σ(c(n,i) i|n)) mod p 那么根据费马小定理,上式等于 m^(Σ(c(n,i) i|n) mod (p-1)) mod p 那么问题的关键就 ...
- hdu 3037 费马小定理+逆元除法取模+Lucas定理
组合数学推推推最后,推得要求C(n+m,m)%p 其中n,m小于10^9,p小于1^5 用Lucas定理求(Lucas定理求nm较大时的组合数) 因为p数据较小可以直接阶乘打表求逆元 求逆元时,由费马 ...
- 洛谷P2480 [SDOI2010]古代猪文(费马小定理,卢卡斯定理,中国剩余定理,线性筛)
洛谷题目传送门 蒟蒻惊叹于一道小小的数论题竟能涉及这么多知识点!不过,掌握了这些知识点,拿下这道题也并非难事. 题意一行就能写下来: 给定\(N,G\),求\(G^{\sum \limits _{d| ...
- hdu 4704 Sum (整数和分解+快速幂+费马小定理降幂)
题意: 给n(1<n<),求(s1+s2+s3+...+sn)mod(1e9+7).其中si表示n由i个数相加而成的种数,如n=4,则s1=1,s2=3. ...
随机推荐
- 解决tomcat的安装文件中点击startup.bat闪退的问题
遇到这样的问题的时候不要慌,可以使用下面的方式去解决! 如果不用Myeclipse部署Tomcat,使用Tomcat中bin文件加下的startup.bat启动服务会出现闪退的情况,其原因是没有为To ...
- java TreeSet 应用
本文主要是介绍一下java集合中的比较重要的Set接口下的可实现类TreeSet TreeSet类,底层用二叉树的数据结构 * 集合中以有序的方式插入和抽取元素. * 添加到TreeSet中的元素必须 ...
- WPF依赖属性2
前一个博客,介绍了依赖属性的基本定义,在定义的过程中register中的的两个参数,并没有传入参数,不知道其是用来干什么的,以下,我们将介绍这两个参数的真正用途FrameworkPropertyMet ...
- 【转载】js常用方法和片段
在网上看了不少js方法的总结没,自己也尝试总结过,这篇只迄今为止觉得最清楚的,尤其是call和apply的方法总结,很到位!! 1.javascript删除元素节点 IE中有这样一个方法:remove ...
- Day-8: 面对对象编程
面对过程的程序设计方法意在将函数分成子函数,再依次调用这些函数来解决问题. 而面对对象的程序设计方法,来源于自然界,类是实例的抽象,实例是类的具体.自定义出来的对象是类,而所有的数据都可以看成是对象, ...
- 想做iPhoneX抢购活动?压测大师先教你优化网站后台
北京时间9月13日凌晨1点,iPhone 10周年,在Apple Park乔布斯剧院,苹果发布了三款新iPhone.全面屏iPhone X来袭,这款被定义为未来的智能手机黑科技满满:全面屏,无线充电. ...
- 微软为啥让免费升Win10?
今天终于赶在截止日期之前把我的联想PC升到win10.微软这次对中国开放的持续一年的免费升级活动主要有两个原因.首先当然是"感恩Windows用户长久支持的回馈".微 ...
- 团队作业8——第二次项目冲刺(Beta阶段)--第二天
团队作业8--第二次项目冲刺(Beta阶段)--第二天 会议照片: 燃尽图: 项目进展: 今天完成了记录用户的姓名,其他的任务还在跟进. 团队贡献比: 队员 角色 团队贡献比 陈麟凤 PM 16% 张 ...
- 团队作业4——第一次项目冲刺(Alpha版本) 4.23
团队作业4--第一次项目冲刺(Alpha版本) Day two: 会议照片 每日站立会议: 项目进展 今天是项目的Alpha敏捷冲刺的第二天,先大概整理下昨天已完成的任务以及今天计划完成的任务.今天主 ...
- 201521123022 《Java程序设计》 第七周学习总结
1. 本周学习总结 以你喜欢的方式(思维导图或其他)归纳总结集合相关内容. 2. 书面作业 Q1.ArrayList代码分析 Q1.1 解释ArrayList的contains源代码 ArrayLis ...