Bayesian CTR Prediction for Bing
Microsoft published a paper in ICML 2009 named ‘Web-Scale Bayesian Click-Through Rate Prediction for Sponsored Search Advertising in Microsoft’s Bing Search Engine’, which is claimed won the competition of most accurate and scalable CTR predictor across MS. This article shows how to inference this model(let’s call it Ad predictor) step-by-step.
Pros. and Cons.
I like it because it’s totally based on Bayesian, and Bayesian is beautiful. Online learning is naturally supported, and the precition accuracy is comparable with FTRL and OWLQN. And both training and prediction is light-weight and fast. Btw: one shortage of this model is it’s not sparse, which may be a big issue when applied on big dataset with huge amount of features.
Inference using Expectation Propagation step by step
Firstly, following is the factor graph of ad predictor.
For each sample, we can use the formula of step 13 to update the posterior parameter of W, which is very easy to be implemented.
Prediction
After training, we can predict with following formula:
Prediction Accuracy
I compared it with FTRL and OWLQN on one dataset for age&gender prediction. AUC of this model is comparable with OWLQN and FTRL, so I recommend you have a try in your case.
Insights
1). You can find variance of each feature increases after every exposure, which makes sense.
2). This model shows samples with more features will have bigger variance, which does not make sense very much. I think the reason is we assume all the features are independent. Any insights from you?
Bayesian CTR Prediction for Bing的更多相关文章
- A Bayesian election prediction, implemented with R and Stan
If the media coverage is anything to go by, people are desperate to know who will win the US electio ...
- DeepFM: A Factorization-Machine based Neural Network for CTR Prediction (2017)论文要点
论文链接: https://arxiv.org/pdf/1703.04247.pdf FM原理参考: Factorization Machines with libFM 论文阅读 https://w ...
- Expectation Propagation: Theory and Application
原文:http://dongguo.me/blog/2014/01/01/expectation-propagation/ 简介 第一次接触EP是10年在百度实习时,当时组里面正有计划把线上的CTR预 ...
- 深度学习在 CTR 中应用
欢迎大家前往腾讯云技术社区,获取更多腾讯海量技术实践干货哦~ 作者:高航 一. Wide&&Deep 模型 首先给出Wide && Deep [1] 网络结构: 本质上 ...
- 主流CTR预估模型的演化及对比
https://zhuanlan.zhihu.com/p/35465875 学习和预测用户的反馈对于个性化推荐.信息检索和在线广告等领域都有着极其重要的作用.在这些领域,用户的反馈行为包括点击.收藏. ...
- 深度学习在CTR预估中的应用
欢迎大家前往腾讯云+社区,获取更多腾讯海量技术实践干货哦~ 本文由鹅厂优文发表于云+社区专栏 一.前言 二.深度学习模型 1. Factorization-machine(FM) FM = LR+ e ...
- 闲聊DNN CTR预估模型
原文:http://www.52cs.org/?p=1046 闲聊DNN CTR预估模型 Written by b manongb 作者:Kintocai, 北京大学硕士, 现就职于腾讯. 伦敦大学张 ...
- CTR深度学习
深度学习在 CTR 中应用 一. Wide&&Deep 模型 首先给出Wide && Deep [1] 网络结构: 本质上是线性模型(左边部分, Wide model) ...
- (读论文)推荐系统之ctr预估-DeepFM模型解析
今天第二篇(最近更新的都是Deep模型,传统的线性模型会后面找个时间更新的哈).本篇介绍华为的DeepFM模型 (2017年),此模型在 Wide&Deep 的基础上进行改进,成功解决了一些问 ...
随机推荐
- SSH2项目网上书店系统手把手教学_Struts2+Spring+Hibernate整合开发
一 序言 鉴于目前J2EE的火热程度,SSH2是每个学生毕业前都必须掌握的一门技术,所以在这里我就使用SSH2技术做一个小型项目,和大家一起学习. SSH2技术的基础概论就不再提了,直接说特点吧. 1 ...
- 探索 ConcurrentHashMap 高并发性的实现机制
很不错的一篇文章,值得一看 http://www.ibm.com/developerworks/cn/java/java-lo-concurrenthashmap/
- Spring Boot + Dubbo 可运行的例子源码-实现服务注册和远程调用
最近公司的一个分布式系统想要尝试迁移到Dubbo,项目本身是Spring Boot的,经过一些努力,最终也算是搭建起一个基础的框架了,放到这里记录一下.需要依赖一个外部的zookeeper. 源码地址 ...
- Java 定时器 Timer 的使用.
一.概念 定时计划任务功能在Java中主要使用的就是Timer对象,它在内部使用多线程的方式进行处理,所以它和多线程技术还是有非常大的关联的.在JDK中Timer类主要负责计划任务的功能, ...
- AFN和SDWebImage请求网络图片的一点问题
问题1.AFN 处理有关图片相关的请求的问题 在使用AFN Post网络图片的时候发现NSLocalizedDescription=Request failed: unacceptable conte ...
- 启动springjar
java -jar cms-exporter-0.0.1-SNAPSHOT.jar --spring.config.location=classpath:./config
- Httprequest 获取url 常用方法
HttpServletRequest常用获取URL的方法 1.request.getRequestURL() 返回的是完整的url,包括Http协议,端口号,servlet名字和映射路 ...
- React——组件
一.创建组件 在React中有两种创建组件的方式,分别是函数形式的组件和类形式的组件 //函数形式: function Welcome(props){ return <p>this is ...
- CCIE-MPLS VPN-实验手册(下卷)
10:跨域的MPLS VPN (Option A) 10.1 实验拓扑 10.1 实验需求 a. R1 R2 R3 组成P-NETWORK R1 R2 R3 位于AS 1,底层协议采用EI ...
- JAVA中String = null 与 String = "" 的区别
JAVA中String = null 与 String = ""的区别 笔者今天在Debug的时候发现的NPE(NullPointerException),辛辛苦苦地调试了半天,终 ...