Bayesian CTR Prediction for Bing
Microsoft published a paper in ICML 2009 named ‘Web-Scale Bayesian Click-Through Rate Prediction for Sponsored Search Advertising in Microsoft’s Bing Search Engine’, which is claimed won the competition of most accurate and scalable CTR predictor across MS. This article shows how to inference this model(let’s call it Ad predictor) step-by-step.
Pros. and Cons.
I like it because it’s totally based on Bayesian, and Bayesian is beautiful. Online learning is naturally supported, and the precition accuracy is comparable with FTRL and OWLQN. And both training and prediction is light-weight and fast. Btw: one shortage of this model is it’s not sparse, which may be a big issue when applied on big dataset with huge amount of features.
Inference using Expectation Propagation step by step
Firstly, following is the factor graph of ad predictor.

















For each sample, we can use the formula of step 13 to update the posterior parameter of W, which is very easy to be implemented.
Prediction
After training, we can predict with following formula:
Prediction Accuracy
I compared it with FTRL and OWLQN on one dataset for age&gender prediction. AUC of this model is comparable with OWLQN and FTRL, so I recommend you have a try in your case.
Insights
1). You can find variance of each feature increases after every exposure, which makes sense.
2). This model shows samples with more features will have bigger variance, which does not make sense very much. I think the reason is we assume all the features are independent. Any insights from you?
Bayesian CTR Prediction for Bing的更多相关文章
- A Bayesian election prediction, implemented with R and Stan
If the media coverage is anything to go by, people are desperate to know who will win the US electio ...
- DeepFM: A Factorization-Machine based Neural Network for CTR Prediction (2017)论文要点
论文链接: https://arxiv.org/pdf/1703.04247.pdf FM原理参考: Factorization Machines with libFM 论文阅读 https://w ...
- Expectation Propagation: Theory and Application
原文:http://dongguo.me/blog/2014/01/01/expectation-propagation/ 简介 第一次接触EP是10年在百度实习时,当时组里面正有计划把线上的CTR预 ...
- 深度学习在 CTR 中应用
欢迎大家前往腾讯云技术社区,获取更多腾讯海量技术实践干货哦~ 作者:高航 一. Wide&&Deep 模型 首先给出Wide && Deep [1] 网络结构: 本质上 ...
- 主流CTR预估模型的演化及对比
https://zhuanlan.zhihu.com/p/35465875 学习和预测用户的反馈对于个性化推荐.信息检索和在线广告等领域都有着极其重要的作用.在这些领域,用户的反馈行为包括点击.收藏. ...
- 深度学习在CTR预估中的应用
欢迎大家前往腾讯云+社区,获取更多腾讯海量技术实践干货哦~ 本文由鹅厂优文发表于云+社区专栏 一.前言 二.深度学习模型 1. Factorization-machine(FM) FM = LR+ e ...
- 闲聊DNN CTR预估模型
原文:http://www.52cs.org/?p=1046 闲聊DNN CTR预估模型 Written by b manongb 作者:Kintocai, 北京大学硕士, 现就职于腾讯. 伦敦大学张 ...
- CTR深度学习
深度学习在 CTR 中应用 一. Wide&&Deep 模型 首先给出Wide && Deep [1] 网络结构: 本质上是线性模型(左边部分, Wide model) ...
- (读论文)推荐系统之ctr预估-DeepFM模型解析
今天第二篇(最近更新的都是Deep模型,传统的线性模型会后面找个时间更新的哈).本篇介绍华为的DeepFM模型 (2017年),此模型在 Wide&Deep 的基础上进行改进,成功解决了一些问 ...
随机推荐
- MySQL(二)之服务管理与初始化文件修改和连接MySQL
上一篇给大家介绍了怎么在linux和windows中安装mysql,本来是可以放在首页的,但是博客园说“安装配置类文件”不让放在首页.接下来给大家介绍一下在linux和windows下MySQL的一下 ...
- NCS8801S芯片RGB/LVDS转EDP功能简介
NCS8801S RGB/LVDS-to-eDP Converter (1/2/4-lane eDP) Features --Embedded-DisplayPort (eDP) Output 1/2 ...
- Entity Framework Core Like 查询揭秘
在Entity Framework Core 2.0中增加一个很酷的功能:EF.Functions.Like(),最终解析为SQL中的Like语句,以便于在 LINQ 查询中直接调用. 不过Entit ...
- IOS学习【VMware 12 安装 Mac OS X 10.11】-Day1
1.下载安装VMware 12 pro (32位不能安装) 虚拟机 VM12密钥 5A02H-AU243-TZJ49-GTC7K-3C61N 2.unlock206 用于VMware 12识别tac ...
- NHibernate教程(9)一1对n关联映射
本节内容 引入 NHibernate中的集合类型 建立父子关系 父子关联映射 结语 引入 通过前几篇文章的介绍,基本上了解了NHibernate,但是在NHibernate中映射关系是NHiberna ...
- 大数的减法函数--c语言
代码展示: http://paste.ubuntu.com/23693598/ #include<stdio.h> #include<stdlib.h> #include& ...
- CCIE-交换路由复习笔记
交换 考点: 1.trunk link(基础) 2.vtp 3.vlan 4.stp rstp mstp 5.hsrp vrrp glbp 6.ec Trunk link: 修改封装模式 802.1q ...
- c++ Lambda函数学习
或许,Lambda 表达式算得上是 C++ 11 新增特性中最激动人心的一个.这个全新的特性听起来很深奥,但却是很多其他语言早已提供(比如 C#)或者即将提供(比如 Java)的.简而言之,Lambd ...
- linux每日一练:Enable multithreading to use std::thread: Operation not permitted问题解决
linux每日一练:Enable multithreading to use std::thread: Operation not permitted问题解决 在linux在需要使用c++11时会遇到 ...
- week2-结对编程【网页实现四则运算】
题目描述: 不知道大家是否尝试过这样一种开发模式:你有一个伙伴,你们坐在一起,并肩作战,面对着同一台显示器,使用着同一键盘,同一个鼠标,你们一起思考,一起分析,一起编程?这次,就让我们来体验一下结对编 ...