This is a Natural Merge Sort program from my textbook. It works, but I don't think it's good.

// Natural merge sort program in the textbook

public class NaturalMergeSortProgram {

    public static void main(String[] args)
{
int a[] = new int[10000000];
int b[] = new int[a.length];
for (int i = 0; i < a.length; i++)
a[i] = (int)(1+Math.random()*(1000-1+1));
long starTime=System.currentTimeMillis();
NaturalMergeSort(a, b);
long endTime=System.currentTimeMillis();
long Time = endTime - starTime;
System.out.println("executing time: "+Time+"(ms)");
/*for (int i = 0; i < b.length; i++)
{ if (i % 20 == 0)
System.out.println();
System.out.print(a[i]+" ");
}*/
} public static void NaturalMergeSort(int a[], int b[])
{ // merge array a into b and then b into a until sorted
while (!MergeRuns(a, b) & !MergeRuns(b, a));
} public static boolean MergeRuns(int a[], int b[])
{
int i = 0, k = 0;
int n = a.length;
boolean asc = true;
int x;
while (i < n)
{
k = i;
do
x = a[i++];
while (i < n && x <= a[i]); // elements are increasing while (i < n && x >= a[i]) // elements are decreasing
x = a[i++];
merge(a, b, k , i-1, asc);
asc = !asc;
}
return k == 0;
} public static void merge(int a[], int b[], int low, int high, boolean asc)
{ // merge a[low:high] into b[low:high]
int k = asc ? low : high;
int c = asc ? 1 : -1;
int i = low, j = high;
while (i <= j)
{
if (a[i] <= a[j])
b[k] = a[i++];
else
b[k] = a[j--];
k += c;
}
} }

Or maybe I don't get it? Because it's rather obscure and lack of comments( these comments are all added by me).

So I decide to write my own Natural Merge Sort program:

// My own natural merge sort program
public class MyNaturalMergeSort { public static void main(String args[]) {
int a[] = new int[10000000];
int b[] = new int[a.length];
for (int i = 0; i < a.length; i++)
a[i] = (int)(1+Math.random()*(1000-1+1)); long starTime=System.currentTimeMillis();
while (!NaturalMergeSort(a, b) && !NaturalMergeSort(b, a));
long endTime=System.currentTimeMillis();
long Time = endTime - starTime;
System.out.println("executing time: "+Time+"(ms)");
for (int i = 0; i < 100; i++)
{ if (i % 20 == 0)
System.out.println();
System.out.print(a[9999*i]+" ");
}
System.out.println(a[a.length-1]);
} public static boolean NaturalMergeSort(int x[], int y[]) {
// find the two adjacent natural increasing arrays x[l:m] and x[m+1:r],
// then merge them into y[l:r] using function merge()
int i, l = 0, m = 0, r;
for (i = 0; i < x.length; i++)
{ l = i;
while ((i < x.length-1) && (x[i] <= x[i+1])) // get x[l:m]
i++;
m = i++;
while ((i < x.length-1) && (x[i] <= x[i+1])) // get x[m+1:r]
i++;
r = (i == x.length) ? i-1 : i; // if it's true, that means array x is
// already sorted, we only need to copy
// array x to array y
merge(x, y, l, m, r);
}
return (l == 0) && (m == x.length - 1); // it's true only when the whole
// array is already sorted
} public static void merge(int x[], int y[], int l, int m, int r) {
// merge x[l:m] and x[m+1:r] into y[l:r]
int i = l,
j = m+1,
k = l;
while ((i <= m) && (j <= r))
if (x[i] <= x[j])
y[k++] = x[i++];
else
y[k++] = x[j++];
while (k <= r)
if (i > m) // elements in x[l:m] are all merged into array y[]
y[k++] = x[j++];
else
y[k++] = x[i++]; }
}

After running each program for 3 times, I got the executing time as below:

program in textbook -- 1457ms 1389ms 1359ms

my program -- 1281ms 1172ms 1185ms

In average, my program saves roughly 0.2 second. Though it's not that better, it still makes me exciting!

And through this practice, I came to know there's a lot of fun hacking the algorithm. I'm looking forword to write more beautiful and efficient code!

Natural Merge Sort(自然归并排序)的更多相关文章

  1. 【算法】归并排序(Merge Sort)(五)

    归并排序(Merge Sort) 归并排序是建立在归并操作上的一种有效的排序算法.该算法是采用分治法(Divide and Conquer)的一个非常典型的应用.将已有序的子序列合并,得到完全有序的序 ...

  2. 连续线性空间排序 起泡排序(bubble sort),归并排序(merge sort)

    连续线性空间排序 起泡排序(bubble sort),归并排序(merge sort) 1,起泡排序(bubble sort),大致有三种算法 基本版,全扫描. 提前终止版,如果发现前区里没有发生交换 ...

  3. [算法]——归并排序(Merge Sort)

    归并排序(Merge Sort)与快速排序思想类似:将待排序数据分成两部分,继续将两个子部分进行递归的归并排序:然后将已经有序的两个子部分进行合并,最终完成排序.其时间复杂度与快速排序均为O(nlog ...

  4. 归并排序(Merge Sort)

    归并排序是建立在归并操作上的一种有效的排序算法,该算法是采用分治法(Divide and Conquer)的一个非常典型的应用.将已有序的子序列合并,得到完全有序的序列:即先使每个子序列有序,再使子序 ...

  5. 经典排序算法 - 归并排序Merge sort

    经典排序算法 - 归并排序Merge sort 原理,把原始数组分成若干子数组,对每个子数组进行排序, 继续把子数组与子数组合并,合并后仍然有序,直到所有合并完,形成有序的数组 举例 无序数组[6 2 ...

  6. 排序算法二:归并排序(Merge sort)

    归并排序(Merge sort)用到了分治思想,即分-治-合三步,算法平均时间复杂度是O(nlgn). (一)算法实现 private void merge_sort(int[] array, int ...

  7. 归并排序 ALDS1_5_B:Merge Sort

    Merge Sort Write a program of a Merge Sort algorithm implemented by the following pseudocode. You sh ...

  8. 【高级排序算法】2、归并排序法的实现-Merge Sort

    简单记录 - bobo老师的玩转算法系列–玩转算法 -高级排序算法 Merge Sort 归并排序 Java实现归并排序 SortTestHelper 排序测试辅助类 package algo; im ...

  9. 【高级排序算法】1、归并排序法 - Merge Sort

    归并排序法 - Merge Sort 文章目录 归并排序法 - Merge Sort nlogn 比 n^2 快多少? 归并排序设计思想 时间.空间复杂度 归并排序图解 归并排序描述 归并排序小结 参 ...

随机推荐

  1. WPF checkbox文字下掉

    WPF checkbox文字下掉 可以使用 <Style TargetType="CheckBox"> <Setter Property="Margin ...

  2. C++点滴20130802

    1.sprintf与printf,fprintf为三兄弟.其中printf输出到屏幕,fprintf输出到文件,而sprintf输出到字符串中.通常情况下,屏幕是可以输出的,文件也可以写的(除非磁盘满 ...

  3. (转)MySQL存储过程/存储过程与自定义函数的区别

    转自:http://www.cnblogs.com/caoruiy/p/4486249.html 语法: 创建存储过程: CREATE [definer = {user|current_user}]  ...

  4. MongoDB理解

    1. 什么是MongoDB (1)MongoDB 是由C++语言编写的,是一个基于分布式文件存储的开源数据库系统.旨在为 WEB 应用提供可扩展的高性能数据存储解决方案. (2)MongoDB 是一个 ...

  5. LeetCode 106. Construct Binary Tree from Inorder and Postorder Traversal (用中序和后序树遍历来建立二叉树)

    Given inorder and postorder traversal of a tree, construct the binary tree. Note:You may assume that ...

  6. 压缩感知重构算法之压缩采样匹配追踪(CoSaMP)

    压缩采样匹配追踪(CompressiveSampling MP)是D. Needell继ROMP之后提出的又一个具有较大影响力的重构算法.CoSaMP也是对OMP的一种改进,每次迭代选择多个原子,除了 ...

  7. WebSocket 详解教程

    WebSocket 详解教程 概述 WebSocket 是什么? WebSocket 是一种网络通信协议.RFC6455 定义了它的通信标准. WebSocket 是 HTML5 开始提供的一种在单个 ...

  8. Lua如何管理”package”

    Lua如何管理"package" 方式一: 私有方法和变量都需要显式定义为local类型的,这很容易造成错误.一旦不小心漏写,就又将方法定义为全局的了. "package ...

  9. Visual paradigm软件介绍

    Visual paradigm软件介绍 说起Visual Paradigm你可能并不陌生,因为此前有一款功能强大的UML软件叫Visual Paradigm for UML,在这款软件在v11.1的时 ...

  10. Einbahnstrasse

    Einbahnstrasse Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Tota ...