最短路问题

解决最短路问题有以下算法:Dijkstra算法,Bellman-Ford算法,Floyd算法,和SPFA算法和启发式搜索算法A*;

每个算法都有它的特点可以解决某些特定的问题,例如:Floyd算法可以求解任意两点之间的最短路径长度,SPFA可以判定是否存在负环问题

一. Dijkstra 算法:

  解决的问题:<非负权图单源最短路>1.从某一点出发到所有点的最短路径,就是最后更新的dis数组2.从某一个点到出发到具体某一点的最短路,只要第一次吧这个点加入最短路就可以终止程序了。3.注意Dijkstar 算法不能处理负权边

  思想:贪心

  做法: 每次将未加入最短路径的点种找距离出发点最近的点加入,然后用这个点更新所有没有加入的点到起始点的最小距离,每次加入一个点更新一次,直到所有的点都加入数组后结束,就可以统计出这个点到所有点的最短路径了

  算法复杂度:斐波那契堆的复杂度O(E+VlgV)

  核心代码:

 void dijk(int s , int n)
{
int i , j , k ;
for( i = ; i <= n ;i++)
{
p[i] = false;
dist[i] = mp[s][i];
}
p[s] = true;
dist[s] = ;
for(i = ; i < n ; i++)
{
int Min = INF;
int k = ;
for( j = ; j <= n ;j++)
{
if(!p[j]&&dist[j]<Min)
{
Min = dist[j];
k = j;
}
}
if(Min==INF) return ;
p[k] = true;
for(j = ; j <= n ;j++)
{
if(!p[j]&&mp[k][j]!=INF&&dist[j]>dist[k]+mp[k][j])
dist[j] = dist[k]+mp[k][j];
}
}
}

二.BellmanFord 算法和SPFA 算法(Shortest Path Faster Algorithm)

  解决的问题:1.权值有负值得图的单源最短路,并且可以检测到负环,注意,由于B_F算法的复杂度过高而且都可以用SPFA解决,所以我们只学习SPFA算法(一个特例:bellman可以检测并输出负环,单SPFA不能输出负环)2.最长路

  思想:松弛操作

  做法:设置一个队列,开始将初始点加入这个队列中,如果队列不空的话,取出队列顶端的元素i,用队列顶端的元素对所有的点j进行松弛操作  if(mp[i][j]!=INF&&dis[j]>dis[i]+mp[i][j]) dis[j] = dis[i]+mp[i][j];  如果j点没有在队列中,说明它还有更新其他点的潜力,所以将被更新的j点也加入到队列中去,设置一个计数器,设总点数为n,如果一个点进队的次数大于n则说明存在负环。

  算法复杂度:O(kE) k是每个节点进队的次数,一般来说k<=2;但是这里的复杂度证明是有问题的,所以SPFA的最坏的情况应该是O(VE)

  核心代码:

、初始化所有点,每一个点保存一个值,表示从源点到达这个点的距离,将源点的值设为0,其他点的值设为无穷大(表示不可达)
、进行循环,循环n-1次。在循环内部,遍历所有的边,进行松弛计算
、遍历图中所有的边,判断是否存在这样情况d[v]>d[u]+w(u,v);
,则表示图中存在从源点可达的负权回路

Bellman-Ford 算法思路

 int SPFA()
{
memset(inq,,sizeof(inq));
for(int i = ;i <= n ;i++)
dis[i] = INF;
top = ;
dis[] = ;
que[top++] = ;
inq[]=true;
for(int i = ;i != top ;i = i+%N)//队列不为空,注意i和top不是同时循环到下一次的
{
int u = que[i];
inq[u]=false;
for(int j = head[u] ; j!=- ;j = edge[j].next)
{
Edge e = edge[j];
if(dis[e.to]>dis[u]+e.w)
{
dis[e.to] = dis[u]+e.w;
if(inq[e.to]==false)
{
que[top++] = e.to;
top %= N;//循环队列
inq[e.to] = true;
}
}
}
}
return dis[n];
}

spfa

 三.Floyd 算法:

  解决的问题:1.全局最短路。2.最长路

  思想:动态规划

  做法:对于每个节点k,都对定点对[i,j]做一次松弛操作

  算法复杂度:O(n^3)

  核心算法:

 for (int k=; k<n; ++k) {
for (int i=; i<n; ++i) {
for (int j=; j<n; ++j) {
/*
实际中为防止溢出,往往需要选判断 dist[i][k]和dist[k][j
都不是Inf ,只要一个是Inf,那么就肯定不必更新。
*/
if (dist[i][k] + dist[k][j] < dist[i][j] ) {
dist[i][j] = dist[i][k] + dist[k][j];
}
}
}
}

  说明:最短路的最优子结构(不只是对于Floyd,对于任何的最短路算法都有次性质)可以通过反证法证明,这里应用这个最优子结构的性质,来用Floyd算法来记录最短路的路径

 void floyd() {
for(int i=; i<=n ; i++){
for(int j=; j<= n; j++){
if(map[i][j]==Inf){
path[i][j] = -;//表示 i -> j 不通
}else{
path[i][j] = i;// 表示 i -> j 前驱为 i
}
}
}
for(int k=; k<=n; k++) {
for(int i=; i<=n; i++) {
for(int j=; j<=n; j++) {
if(!(dist[i][k]==Inf||dist[k][j]==Inf)&&dist[i][j] > dist[i][k] + dist[k][j]) {
dist[i][j] = dist[i][k] + dist[k][j];
path[i][k] = i;
path[i][j] = path[k][j];
}
}
}
}
}
void printPath(int from, int to) {
/*
* 这是倒序输出,若想正序可放入栈中,然后输出。
*
* 这样的输出为什么正确呢?个人认为用到了最优子结构性质,
* 即最短路径的子路径仍然是最短路径
*/
while(path[from][to]!=from) {
System.out.print(path[from][to] +"");
to = path[from][to];
}
}

当然,这里只是提供一个思路,其实对于所有的最短路保存路径都可以用类似是dfs保存路径的方法,通过保存前驱的方法,每次松弛操作的时候对前驱也进行修改就可以了

 【最小生成树问题】

解决最小生成树问题的算法有:prim算法和kruskal算法

一.prim 算法(普利姆算法)

  思想:贪心

  做法:类似于dijkstra算法,只不过是每次选取的点是距离生成树最近的点,更新的时候不再是更新这个点到起始点的最短距离,而是到这个生成输的最短距离。

  核心代码:

 void prim(int s , int n)
{
int i , j , k ;
for( i = ; i <= n ;i++)
{
p[i] = false;
dist[i] = mp[s][i];
}
p[s] = true;
dist[s] = ;
for(i = ; i < n ; i++)
{
int Min = INF;
int k = ;
for( j = ; j <= n ;j++)
{
if(!p[j]&&dist[j]<Min)
{
Min = dist[j];
k = j;
}
}
if(Min==INF) return ;
p[k] = true;
for(j = ; j <= n ;j++)
{
if(!p[j]&&mp[k][j]!=INF&&dist[j]>mp[k][j])
dist[j] = mp[k][j];
}
}
}

  时间复杂度:邻接矩阵:O(v^2)     邻接表:O(elog2v)

二.kruskal 算法

  思想:并查集

  做法:将原图G中所有E条边按权值从小到大排序。循环:从权值最小的边开始遍历每条边,直至图G_new中所有的节点都在同一个连通分量中。每次从图中未加入树种的边种找到边权最小的看,这两个点的祖先是否是一个,如果是一个说明两个点已经是一个树上的了,不做操作,如果两个点来自不同的树即有不同的祖先,那么就把这两个点所代表的两个树合并起来,最后当所有的点都在一棵树上的时候停止操作,一般用合并次数来控制,即n个点需要合并n-1次,所以最好合并操作写在kruskal函数内部,这样方便统计步数

  核心代码:

 struct Edge{
int from;
int to;
int w;
bool operator < (const Edge &a) const
{
return w<a.w;
}
}edge[N*N];
int fa[N];
int Getfa(int x){return (fa[x]==x)?x:fa[x] = Getfa(fa[x]); }
int fl;
int n,m;
bool solve(int x){
int cnt = ;//共合n-1次结束
for(int i = ; i <= n; i++) fa[i] = i;//注意点是从1开始编号的
for(int i = x; i < m; i++){
int X = Getfa(edge[i].from);
int Y = Getfa(edge[i].to);
if(X != Y){
fa[X] = Y;
cnt++;
if(cnt==n-){ fl = edge[i].w;return true;}
}
}
return false;
}

注意:对于图的题,一定要根据题意来选取是用链表存储还是用数组存储,选择好的存储方法便于解决问题,也要注意点的编号是从几开始的。

最小生成树&最短路基础算法总结的更多相关文章

  1. ACM基础算法入门及题目列表

    对于刚进入大学的计算机类同学来说,算法与程序设计竞赛算是不错的选择,因为我们每天都在解决问题,锻炼着解决问题的能力. 这里以TZOJ题目为例,如果为其他平台题目我会标注出来,同时我的主页也欢迎大家去访 ...

  2. 最小生成树两个经典算法(Prime算法、Kruskal算法) - biaobiao88

    经典的最小生成树例子,Prime算法,具体的步骤及其注释本人均在代码中附加,请仔细阅读与品味,要求,可以熟练的打出. //Prime算法基础 #include<iostream> usin ...

  3. PHP基础算法

    1.首先来画个菱形玩玩,很多人学C时在书上都画过,咱们用PHP画下,画了一半. 思路:多少行for一次,然后在里面空格和星号for一次. <?php for($i=0;$i<=3;$i++ ...

  4. 10个经典的C语言面试基础算法及代码

    10个经典的C语言面试基础算法及代码作者:码农网 – 小峰 原文地址:http://www.codeceo.com/article/10-c-interview-algorithm.html 算法是一 ...

  5. Java基础算法集50题

    最近因为要准备实习,还有一个蓝桥杯的编程比赛,所以准备加强一下算法这块,然后百度了一下java基础算法,看到的都是那50套题,那就花了差不多三个晚自习的时间吧,大体看了一遍,做了其中的27道题,有一些 ...

  6. 贝叶斯公式由浅入深大讲解—AI基础算法入门

    1 贝叶斯方法 长久以来,人们对一件事情发生或不发生的概率,只有固定的0和1,即要么发生,要么不发生,从来不会去考虑某件事情发生的概率有多大,不发生的概率又是多大.而且概率虽然未知,但最起码是一个确定 ...

  7. 图->连通性->最小生成树(普里姆算法)

    文字描述 用连通网来表示n个城市及n个城市间可能设置的通信线路,其中网的顶点表示城市,边表示两城市之间的线路,赋于边的权值表示相应的代价.对于n个定点的连通网可以建立许多不同的生成树,每一棵生成树都可 ...

  8. 贝叶斯公式由浅入深大讲解—AI基础算法入门【转】

    本文转载自:https://www.cnblogs.com/zhoulujun/p/8893393.html 1 贝叶斯方法 长久以来,人们对一件事情发生或不发生的概率,只有固定的0和1,即要么发生, ...

  9. java入门学习(3)—循环,选择,基础算法,API概念

    1.顺序结构:也就是顺着程序的前后关系,依次执行.2.选择分支:利用if..else , / switch(){case [ 这个必须是常量]:}; / if..else if….. ….else.. ...

随机推荐

  1. 最长回文子序列(LPS)

    问题描述: 回文是正序与逆序相同的非空字符串,例如"civic"."racecar"都是回文串.任意单个字符的回文是其本身. 求最长回文子序列要求在给定的字符串 ...

  2. DeepLearning.ai学习笔记汇总

    第一章 神经网络与深度学习(Neural Network & Deeplearning) DeepLearning.ai学习笔记(一)神经网络和深度学习--Week3浅层神经网络 DeepLe ...

  3. 网关 php-cgi fastcgi phpfpm

    本文同时发表在https://github.com/zhangyachen/zhangyachen.github.io/issues/88 关于网关的理解,一句话就是:作为一种翻译器,抽象出了一种能够 ...

  4. xamarin android如何监听单击事件

    在xamarin android单击事件是最基础的事情,看过菜鸟上的android教程时,java写的都是监听事件,为一个按钮,单选按钮.多选按钮的单击事件有三种,前面两种用的非常普遍,也很简易,我这 ...

  5. 【转】搭建spark环境 单机版

    本文将介绍Apache Spark 1.6.0在单机的部署,与在集群中部署的步骤基本一致,只是少了一些master和slave文件的配置.直接安装scala与Spark就可以在单机使用,但如果用到hd ...

  6. react看这篇就够了(react+webpack+redux+reactRouter+sass)

    本帖将对一下内容进行分享: 1.webpack环境搭建: 2.如何使用react-router: 3.引入sass预编译: 4.react 性能优化方案: 5.redux结合react使用: 6.fe ...

  7. Python新式类与经典类的区别

    1.新式类与经典类 在Python 2及以前的版本中,由任意内置类型派生出的类(只要一个内置类型位于类树的某个位置),都属于“新式类”,都会获得所有“新式类”的特性:反之,即不由任意内置类型派生出的类 ...

  8. 微信小程序开发之详解生命周期方法

    生命周期是指一个小程序从创建到销毁的一系列过程 在小程序中 ,通过App()来注册一个小程序 ,通过Page()来注册一个页面 先来看一张小程序项目结构 从上图可以看出,根目录下面有包含了app.js ...

  9. TurnipBit-MicroPython开发板:跟孩子一起DIY跳动的心

    天是越来越热了,小心脏也是越跳越快啊,为了表达现在激动的心情,必须做个激动的心开始跳动.紧接着就开始带领大家做个激动的心. 首先说说要借助的平台,这次仅仅需要借助一块TurnipBit开发板. Tur ...

  10. Jenkins:VMware虚拟机Linux系统的详细安装和使用教程

    jenkins:VMware虚拟机Linux系统的详细安装和使用教程 (一) 不是windows安装虚拟机可跳过 1.Windows安装VMware 2.VMware安装linux系统 3.windo ...