前面几篇文章讲到了卷积神经网络CNN,但是对于它在每一层提取到的特征以及训练的过程可能还是不太明白,所以这节主要通过模型的可视化来神经网络在每一层中是如何训练的。我们知道,神经网络本身包含了一系列特征提取器,理想的feature map应该是稀疏的以及包含典型的局部信息。通过模型可视化能有一些直观的认识并帮助我们调试模型,比如:feature map与原图很接近,说明它没有学到什么特征;或者它几乎是一个纯色的图,说明它太过稀疏,可能是我们feature map数太多了(feature_map数太多也反映了卷积核太小)。可视化有很多种,比如:feature map可视化、权重可视化等等,我以feature map可视化为例。


模型可视化

  因为我没有搜到用paddlepaddle在imagenet 1000分类的数据集上预训练好的googLeNet inception v3,所以用了keras做实验,以下图作为输入:

  • 输入图片

    • 北汽绅宝D50:

  • feature map可视化

  取网络的前15层,每层取前3个feature map。

  北汽绅宝D50 feature map:

  

  从左往右看,可以看到整个特征提取的过程,有的分离背景、有的提取轮廓,有的提取色差,但也能发现10、11层中间两个feature map是纯色的,可能这一层feature map数有点多了,另外北汽绅宝D50的光晕对feature map中光晕的影响也能比较明显看到。

  • Hypercolumns 
    通常我们把神经网络最后一个fc全连接层作为整个图片的特征表示,但是这一表示可能过于粗糙(从上面的feature map可视化也能看出来),没法精确描述局部空间上的特征,而网络的第一层空间特征又太过精确,缺乏语义信息(比如后面的色差、轮廓等),于是论文《Hypercolumns for Object Segmentation and Fine-grained Localization》提出一种新的特征表示方法:Hypercolumns——将一个像素的 hypercolumn 定义为所有 cnn 单元对应该像素位置的激活输出值组成的向量),比较好的tradeoff了前面两个问题,直观地看如图:

  把北汽绅宝D50 第1、4、7层的feature map以及第1, 4, 7, 10, 11, 14, 17层的feature map分别做平均,可视化如下:

  


代码实践

 # -*- coding: utf-8 -*-
from keras.applications import InceptionV3
from keras.applications.inception_v3 import preprocess_input
from keras.preprocessing import image
from keras.models import Model
from keras.applications.imagenet_utils import decode_predictions
import numpy as np
import cv2
from cv2 import *
import matplotlib.pyplot as plt
import scipy as sp
from scipy.misc import toimage def test_opencv():
# 加载摄像头
cam = VideoCapture(0) # 0 -> 摄像头序号,如果有两个三个四个摄像头,要调用哪一个数字往上加嘛
# 抓拍 5 张小图片
for x in range(0, 5):
s, img = cam.read()
if s:
imwrite("o-" + str(x) + ".jpg", img) def load_original(img_path):
# 把原始图片压缩为 299*299大小
im_original = cv2.resize(cv2.imread(img_path), (299, 299))
im_converted = cv2.cvtColor(im_original, cv2.COLOR_BGR2RGB)
plt.figure(0)
plt.subplot(211)
plt.imshow(im_converted)
return im_original def load_fine_tune_googlenet_v3(img):
# 加载fine-tuning googlenet v3模型,并做预测
model = InceptionV3(include_top=True, weights='imagenet')
model.summary()
x = image.img_to_array(img)
x = np.expand_dims(x, axis=0)
x = preprocess_input(x)
preds = model.predict(x)
print('Predicted:', decode_predictions(preds))
plt.subplot(212)
plt.plot(preds.ravel())
plt.show()
return model, x def extract_features(ins, layer_id, filters, layer_num):
'''
提取指定模型指定层指定数目的feature map并输出到一幅图上.
:param ins: 模型实例
:param layer_id: 提取指定层特征
:param filters: 每层提取的feature map数
:param layer_num: 一共提取多少层feature map
:return: None
'''
if len(ins) != 2:
print('parameter error:(model, instance)')
return None
model = ins[0]
x = ins[1]
if type(layer_id) == type(1):
model_extractfeatures = Model(input=model.input, output=model.get_layer(index=layer_id).output)
else:
model_extractfeatures = Model(input=model.input, output=model.get_layer(name=layer_id).output)
fc2_features = model_extractfeatures.predict(x)
if filters > len(fc2_features[0][0][0]):
print('layer number error.', len(fc2_features[0][0][0]),',',filters)
return None
for i in range(filters):
plt.subplots_adjust(left=0, right=1, bottom=0, top=1)
plt.subplot(filters, layer_num, layer_id + 1 + i * layer_num)
plt.axis("off")
if i < len(fc2_features[0][0][0]):
plt.imshow(fc2_features[0, :, :, i]) # 层数、模型、卷积核数
def extract_features_batch(layer_num, model, filters):
'''
批量提取特征
:param layer_num: 层数
:param model: 模型
:param filters: feature map数
:return: None
'''
plt.figure(figsize=(filters, layer_num))
plt.subplot(filters, layer_num, 1)
for i in range(layer_num):
extract_features(model, i, filters, layer_num)
plt.savefig('sample.jpg')
plt.show() def extract_features_with_layers(layers_extract):
'''
提取hypercolumn并可视化.
:param layers_extract: 指定层列表
:return: None
'''
hc = extract_hypercolumn(x[0], layers_extract, x[1])
ave = np.average(hc.transpose(1, 2, 0), axis=2)
plt.imshow(ave)
plt.show() def extract_hypercolumn(model, layer_indexes, instance):
'''
提取指定模型指定层的hypercolumn向量
:param model: 模型
:param layer_indexes: 层id
:param instance: 模型
:return:
'''
feature_maps = []
for i in layer_indexes:
feature_maps.append(Model(input=model.input, output=model.get_layer(index=i).output).predict(instance))
hypercolumns = []
for convmap in feature_maps:
for i in convmap[0][0][0]:
upscaled = sp.misc.imresize(convmap[0, :, :, i], size=(299, 299), mode="F", interp='bilinear')
hypercolumns.append(upscaled)
return np.asarray(hypercolumns) if __name__ == '__main__':
img_path = '~/auto1.jpg'
img = load_original(img_path)
x = load_fine_tune_googlenet_v3(img)
extract_features_batch(15, x, 3)
extract_features_with_layers([1, 4, 7])
extract_features_with_layers([1, 4, 7, 10, 11, 14, 17])

总结

  还有一些网站做的关于CNN的可视化做的非常不错,譬如这个网站:http://shixialiu.com/publications/cnnvis/demo/,大家可以在训练的时候采取不同的卷积核尺寸和个数对照来看训练的中间过程。最近PaddlePaddle也开源了可视化工具VisaulDL,下篇文章我们讲讲paddlepaddle的visualDL和tesorflow的tensorboard。

  

【深度学习系列】CNN模型的可视化的更多相关文章

  1. 【深度学习系列3】 Mariana CNN并行框架与图像识别

    [深度学习系列3] Mariana CNN并行框架与图像识别 本文是腾讯深度学习系列文章的第三篇,聚焦于腾讯深度学习平台Mariana中深度卷积神经网络Deep CNNs的多GPU模型并行和数据并行框 ...

  2. 【深度学习系列】PaddlePaddle垃圾邮件处理实战(二)

    PaddlePaddle垃圾邮件处理实战(二) 前文回顾   在上篇文章中我们讲了如何用支持向量机对垃圾邮件进行分类,auc为73.3%,本篇讲继续讲如何用PaddlePaddle实现邮件分类,将深度 ...

  3. 深度学习系列 Part(3)

    这是<GPU学习深度学习>系列文章的第三篇,主要是接着上一讲提到的如何自己构建深度神经网络框架中的功能模块,进一步详细介绍 Tensorflow 中 Keras 工具包提供的几种深度神经网 ...

  4. 时间序列深度学习:seq2seq 模型预测太阳黑子

    目录 时间序列深度学习:seq2seq 模型预测太阳黑子 学习路线 商业中的时间序列深度学习 商业中应用时间序列深度学习 深度学习时间序列预测:使用 keras 预测太阳黑子 递归神经网络 设置.预处 ...

  5. 使用腾讯云 GPU 学习深度学习系列之二:Tensorflow 简明原理【转】

    转自:https://www.qcloud.com/community/article/598765?fromSource=gwzcw.117333.117333.117333 这是<使用腾讯云 ...

  6. 【转】[caffe]深度学习之图像分类模型AlexNet解读

    [caffe]深度学习之图像分类模型AlexNet解读 原文地址:http://blog.csdn.net/sunbaigui/article/details/39938097   本文章已收录于: ...

  7. 【深度学习系列2】Mariana DNN多GPU数据并行框架

    [深度学习系列2]Mariana DNN多GPU数据并行框架  本文是腾讯深度学习系列文章的第二篇,聚焦于腾讯深度学习平台Mariana中深度神经网络DNN的多GPU数据并行框架.   深度神经网络( ...

  8. 【深度学习系列】关于PaddlePaddle的一些避“坑”技巧

    最近除了工作以外,业余在参加Paddle的AI比赛,在用Paddle训练的过程中遇到了一些问题,并找到了解决方法,跟大家分享一下: PaddlePaddle的Anaconda的兼容问题 之前我是在服务 ...

  9. 基于TensorFlow的深度学习系列教程 2——常量Constant

    前面介绍过了Tensorflow的基本概念,比如如何使用tensorboard查看计算图.本篇则着重介绍和整理下Constant相关的内容. 基于TensorFlow的深度学习系列教程 1--Hell ...

  10. 深度学习 vs. 概率图模型 vs. 逻辑学

    深度学习 vs. 概率图模型 vs. 逻辑学 摘要:本文回顾过去50年人工智能(AI)领域形成的三大范式:逻辑学.概率方法和深度学习.文章按时间顺序展开,先回顾逻辑学和概率图方法,然后就人工智能和机器 ...

随机推荐

  1. SSIS 实用表达式部分总结

    下面,列出一些实用的表达式: 1,路径取文件名 RIGHT([FilePath],FINDSTRING(REVERSE([FilePath]),) - ) RIGHT(@[User::FilePath ...

  2. Chrome 里的请求报错 "CAUTION: Provisional headers are shown" 是什么意思?

    在调试器中看到文件显示提示为 CAUTION: Provisional headers are shown, 可是直接复制链接访问资源却可以正常访问, 最后发现是https 问题,资源采用ssl协议, ...

  3. 【JavaScript 】for 循环进化史

    ECMAScript 6已经逐渐普及,经过二十多年的改进,很多功能也有了更成熟的语句,比如 for 循环 这篇博客将介绍一下从最初的 for 循环,到 ES6 的 for-of 等四种遍历方法 先定义 ...

  4. phpstorm+wamp+xdebug配置php调试环境

    本篇文章主要是:教大家如果搭建一套phpstorm+wamp+xdebug调试php的环境现在大多数的程序员使用的调试方式一般都是echo, var_dump, file_put_contents等其 ...

  5. Nginx集群之WCF大文件上传及下载(支持6G传输)

    目录 1       大概思路... 1 2       Nginx集群之WCF大文件上传及下载... 1 3       BasicHttpBinding相关配置解析... 2 4       编写 ...

  6. 【Python3之函数对象】

    函数对象 函数(Function)作为程序语言中不可或缺的一部分,但函数作为第一类对象(First-Class Object)却是 Python 函数的一大特性. 那到底什么是第一类对象(First- ...

  7. 设计一个有getMin功能的栈(1)

    题目: 实现一个特殊的栈,在实现栈的基本功能的基础上,再实现返回栈中最小元素的操作. 要求: 1.pop.push.getMin操作的时间复杂度都是O(1) 2.设计的栈类型可以输用现成的栈结构 解答 ...

  8. 【Dijkstra堆优化】洛谷P2243电路维修

    题目背景 Elf 是来自Gliese 星球的少女,由于偶然的原因漂流到了地球上.在她无依无靠的时候,善良的运输队员Mark 和James 收留了她.Elf 很感谢Mark和James,可是一直也没能给 ...

  9. 【读书笔记】【深入理解ES6】#3-函数

    函数形参的默认值 ES6中的默认参数值 function makeRequest(url, timeout = 2000, callback = function() {}) { } 可以为任意参数指 ...

  10. Java学习笔记21---内部类之对成员内部类的补充说明(二)

    上篇文章--笔记20补充说明了前四点,这里接着来说剩下的两点. 要点如下: 5.访问权限修饰符可以修饰成员内部类 1).访问权限修饰符对内部类的访问限制与外部类的一般成员遵循一样的规则,具体请参考笔记 ...