mean shift算法是一种强大的无参数离散数据点的聚类方法,其在图像平滑、图像分割以及目标跟踪等方面都有着广泛的应用。[Yamauchi et al. 2005]基于mean shift算法提出了一种网格分割方法,具体来说,给定一个三角网格,其面片重心和面片法向可以组成6维特征空间中的一系列离散点集,然后使用mean shift算法对其进行聚类,聚类后每个面片的法向可以修正为各自聚类中心的法向信息,最后基于面片修正法向进行网格分割。下面具体介绍该算法的过程。

  给定一个由面片{Ti}所组成的三角网格M,其面片重心{ci}和面片法向{ni}组成R6空间中的离散点集χ = {(pi, qi) = (ci, ni)}。利用mean shift算法对其进行聚类之后,对每个聚类中心yi[c] = {(p, q)的法向部分归一化之后可以作为该类中三角面片的新法向。

  修正后的面片法向有两个应用,一个是网格光顺,另一个是网格分割。对于网格分割应用,需要指定网格分割的区域数目。在初始化阶段,先随机选定各个区域的种子面片,然后迭代以下两个步骤直到收敛稳定。

1:区域增长

  相邻三角面片TiTj之间的距离定义为:

distance(Ti, Tj) = || NmiNmj ||

其中Nm为利用mean shift算法得到的面片修正法向。

  这样利用多源Dijkstra最短路算法可以为每个三角面片指定一个所属区域。

2:计算种子面片

  区域增长完成后,需要重新计算每个区域的种子面片,新的种子面片为每个区域最中心的三角面片。因此该阶段相邻三角面片TiTj之间的距离定义为:

distance(Ti, Tj) = || cicj ||

其中ci为三角面片Ti的重心。

  这样每个区域可以找到一个距离边界最远的三角面片,即为新的种子面片。

图:(上左)原始网格 (上中)原始网格法向 (上右)mean shift聚类

(下左)网格修正法向 (下中)网格分割效果 (下右)网格光顺效果

参考文献:

[1] Hitoshi Yamauchi, Seungyong Lee, Yunjin Lee, Yutaka Ohtake, Alexander Belyaev, and Hans-Peter Seidel. 2005. Feature Sensitive Mesh Segmentation with Mean Shift. In Proceedings of the International Conference on Shape Modeling and Applications 2005 (SMI '05). IEEE Computer Society, Washington, DC, USA, 238--245.

附录

Mean-shift算法

  利用某个概率密度函数f(x)采样得到一系列数据样本χ = (x1, x2, … , xn)∈Rd。假设我们需要估计这些样本的概率密度函数f(·),那么由核密度估计(kernel density estimation)方法可以近似得到其概率密度函数为:

其中K(x)称为核函数(kernel function),h为带宽(bandwidth)。核函数满足如下条件:

K(x) ≥ 0 并且

  一般核函数是满足径向对称(radially symmetric),即可以表示为:

其中k(x)称为分布函数(profile function),c为归一化参数。

  于是概率密度函数可以转化成如下形式:

  一般使用较多的核函数是Gaussian核函数和Epanechnikov核函数,其具体形式如下:

Gaussian核函数:

Epanechnikov核函数:

其中cdd维单位球的体积。

  假设将数据样本χ聚类成一系列簇,我们可以将聚类中心设定为概率密度函数的局部极值点,而寻找局部极值点的一个最简单方法就是梯度上升法。

  对概率密度函数求导后得到:

其中g(x) = -k’(x),m(x)的形式如下:

  上式中的m(x)就是所谓的mean shift向量,它的物理含义就是概率密度函数的梯度,也就是当前点的移动方向和大小。

  利用mean shift算法进行聚类的过程分如下两步:

  1. 对于每一个数据样本xi∈χ,初始化xiyi[0]

  2. 利用梯度上升方法计算yi[j]直到收敛,yi[j+1] = yi[j] + m(yi[j]),j = 0, 1, 2, …。

  对于如下二维数据样本,利用核密度估计方法可以得到不同带宽下的概率密度函数分布,并且利用mean shift算法可以得到不同的聚类结果。

图:原始二维数据样本

图:bandwidth = 2和bandwidth = 0.8所对应的概率密度函数分布图

图:bandwidth = 2和bandwidth = 0.8所对应的mean shift聚类效果

  上述mean shift算法有个简单的扩展,对于数据样本χ = {xi= (pi, qi): pi∈P, qi∈Q},每个样本由两部分内容组成,那么使用多元核密度估计(multivariate kernel density estimation)方法可以得到其概率密度函数为:

  此时mean shift向量为:

参考:

http://blog.csdn.net/ttransposition/article/details/38514127

基于均值漂移的三维网格分割算法(Mean Shift)的更多相关文章

  1. 基于谱聚类的三维网格分割算法(Spectral Clustering)

    谱聚类(Spectral Clustering)是一种广泛使用的数据聚类算法,[Liu et al. 2004]基于谱聚类算法首次提出了一种三维网格分割方法.该方法首先构建一个相似矩阵用于记录网格上相 ...

  2. [ZZ] 基于Matlab的标记分水岭分割算法

    基于Matlab的标记分水岭分割算法 http://blog.sina.com.cn/s/blog_725866260100rz7x.html 1 综述 Separating touching obj ...

  3. 基于随机游走的三维网格分割算法(Random Walks)

    首先以一维随机游走(1D Random Walks)为例来介绍下随机游走(Random Walks)算法,如下图所示,从某点出发,随机向左右移动,向左和向右的概率相同,都为1/2,并且到达0点或N点则 ...

  4. 基于模糊聚类和最小割的层次化三维网格分割算法(Hierarchical Mesh Decomposition)

    网格分割算法是三维几何处理算法中的重要算法,具有许多实际应用.[Katz et al. 2003]提出了一种新型的层次化网格分割算法,该算法能够将几何模型沿着凹形区域分割成不同的几何部分,并且可以避免 ...

  5. 三维网格分割算法(Random Walks)

    首先以一维随机游走(1D Random Walks)为例来介绍下随机游走(Random Walks)算法,如下图所示,从某点出发,随机向左右移动,向左和向右的概率相同,都为1/2,并且到达0点或N点则 ...

  6. 基于Matlab的标记分水岭分割算法

    转自:http://blog.sina.com.cn/lyqmath 1 综述 Separating touching objects in an image is one of the more d ...

  7. 笔记:基于DCNN的图像语义分割综述

    写在前面:一篇魏云超博士的综述论文,完整题目为<基于DCNN的图像语义分割综述>,在这里选择性摘抄和理解,以加深自己印象,同时达到对近年来图像语义分割历史学习和了解的目的,博古才能通今!感 ...

  8. Meanshift均值漂移算法

      通俗理解Meanshift均值漂移算法  Meanshift车手?? 漂移?? 秋名山???   不,不,他是一组算法,  今天我就带大家来了解一下机器学习中的Meanshift均值漂移. Mea ...

  9. opencv2对读书笔记——使用均值漂移算法查找物体

    一些小概念 1.反投影直方图的结果是一个概率映射,体现了已知图像内容出如今图像中特定位置的概率. 2.概率映射能够找到最初的位置,从最初的位置開始而且迭代移动,便能够找到精确的位置,这就是均值漂移算法 ...

随机推荐

  1. 远程推送-----iOS

    前言 说一下我了解的推送 正文 APNs--------Apple Push Notification service 1 远程推送的大概流程及其原理 我们的设备联网时(无论是蜂窝联网还是Wi-Fi联 ...

  2. 基于Spring DM管理的Bundle获取Spring上下文对象及指定Bean对象

    在讲述服务注册与引用的随笔中,有提到context.getServiceReferences()方法,通过该方法可以获取到OSGI框架容器中的指定类型的服务引用,从而获取到对应的服务对象.同时该方法还 ...

  3. My97DatePicker.js 之无效日期设置

    1.下载并引用My97DatePicker.js 2.将工作日休假的和周末上班的维护到数据库中 3.取出某段时间内的不上班日期集合 /// <summary> ///获取 无效日期集合 1 ...

  4. InnoDB和Foreign KEY Constraints

    InnoDB表中中Foreign Key定义 1. InnoDB允许a foreign key引用一个索引列或者索引组列. 2. InnoDB现在并不支持用户定义的分区表有foreign keys,这 ...

  5. javascript的方法

    1. decodeURIComponent() decodeURIComponent() 函数可对 encodeURIComponent() 函数编码的 URI 进行解码. 语法: decodeURI ...

  6. devexpress实现多行表头(复合表头),附源代码

    在许多项目中都会涉及到复合表头(多行表头),这里给大家分享一个devexpress实现多重表头的案例. 1.第一步将表格类型由默认的gridview变为bandedgridview,如图所示: 2.第 ...

  7. dev控件chart简单实现多图例,双曲线,双柱图,曲线与柱图

    1.效果图 2.数据源代码: ; i < ; i++) { == ) { dt1.Rows.Add( * i); dt2.Rows.Add( * i+); } else { dt1.Rows.A ...

  8. SDOI Day1

    好了做了SDOI day1的3道题,来讲下做法及感想吧 T1:排序(暴力,搜索) 题目:http://www.lydsy.com/JudgeOnline/problem.php?id=3990 我们可 ...

  9. Mac环境下.Net开发

    Mono是一个由Novell公司(由Xamarin发起),并由Miguel de lcaza领导的,一个致力于开创.NET在Linux上使用的开源工程.它包含了一个C#语言的编译器,一个CLR的运行时 ...

  10. Tinychatserver: 一个简易的命令行群聊程序

    这是学习网络编程后写的一个练手的小程序,可以帮助复习socket,I/O复用,非阻塞I/O等知识点. 通过回顾写的过程中遇到的问题的形式记录程序的关键点,最后给出完整程序代码. 0. 功能 编写一个简 ...