MCMC(一)蒙特卡罗方法

    MCMC(二)马尔科夫链

    MCMC(三)MCMC采样和M-H采样

    MCMC(四)Gibbs采样

    在MCMC(三)MCMC采样和M-H采样中,我们讲到了M-H采样已经可以很好的解决蒙特卡罗方法需要的任意概率分布的样本集的问题。但是M-H采样有两个缺点:一是需要计算接受率,在高维时计算量大。并且由于接受率的原因导致算法收敛时间变长。二是有些高维数据,特征的条件概率分布好求,但是特征的联合分布不好求。因此需要一个好的方法来改进M-H采样,这就是我们下面讲到的Gibbs采样。

1. 重新寻找合适的细致平稳条件

    在上一篇中,我们讲到了细致平稳条件:如果非周期马尔科夫链的状态转移矩阵$P$和概率分布$\pi(x)$对于所有的$i,j$满足:$$\pi(i)P(i,j) = \pi(j)P(j,i)$$

    则称概率分布$\pi(x)$是状态转移矩阵$P$的平稳分布。

    在M-H采样中我们通过引入接受率使细致平稳条件满足。现在我们换一个思路。

    从二维的数据分布开始,假设$\pi(x_1,x_2)$是一个二维联合数据分布,观察第一个特征维度相同的两个点$A(x_1^{(1)},x_2^{(1)})$和$B(x_1^{(1)},x_2^{(2)})$,容易发现下面两式成立:$$\pi(x_1^{(1)},x_2^{(1)}) \pi(x_2^{(2)} | x_1^{(1)}) = \pi(x_1^{(1)})\pi(x_2^{(1)}|x_1^{(1)}) \pi(x_2^{(2)} | x_1^{(1)})  $$$$\pi(x_1^{(1)},x_2^{(2)}) \pi(x_2^{(1)} | x_1^{(1)}) = \pi(x_1^{(1)}) \pi(x_2^{(2)} | x_1^{(1)})\pi(x_2^{(1)}|x_1^{(1)})$$

    由于两式的右边相等,因此我们有:$$\pi(x_1^{(1)},x_2^{(1)}) \pi(x_2^{(2)} | x_1^{(1)})  = \pi(x_1^{(1)},x_2^{(2)}) \pi(x_2^{(1)} | x_1^{(1)}) $$

    也就是:$$\pi(A) \pi(x_2^{(2)} | x_1^{(1)})  = \pi(B) \pi(x_2^{(1)} | x_1^{(1)}) $$

    观察上式再观察细致平稳条件的公式,我们发现在$x_1 = x_1^{(1)}$这条直线上,如果用条件概率分布$\pi(x_2| x_1^{(1)})$作为马尔科夫链的状态转移概率,则任意两个点之间的转移满足细致平稳条件!这真是一个开心的发现,同样的道理,在在$x_2 = x_2^{(1)}$这条直线上,如果用条件概率分布$\pi(x_1| x_2^{(1)})$作为马尔科夫链的状态转移概率,则任意两个点之间的转移也满足细致平稳条件。那是因为假如有一点$C(x_1^{(2)},x_2^{(1)})$,我们可以得到:$$\pi(A) \pi(x_1^{(2)} | x_2^{(1)})  = \pi(C) \pi(x_1^{(1)} | x_2^{(1)}) $$

    基于上面的发现,我们可以这样构造分布$\pi(x_1,x_2)$的马尔可夫链对应的状态转移矩阵$P$:$$P(A \to B) = \pi(x_2^{(B)}|x_1^{(1)})\;\; if\; x_1^{(A)} = x_1^{(B)} =x_1^{(1)}$$$$P(A \to C) = \pi(x_1^{(C)}|x_2^{(1)})\;\; if\; x_2^{(A)} = x_2^{(C)} =x_2^{(1)}$$$$P(A \to D) = 0\;\; else$$

    有了上面这个状态转移矩阵,我们很容易验证平面上的任意两点$E,F$,满足细致平稳条件:$$\pi(E)P(E \to F)  = \pi(F)P(F \to E)$$

2.  二维Gibbs采样

    利用上一节找到的状态转移矩阵,我们就得到了二维Gibbs采样,这个采样需要两个维度之间的条件概率。具体过程如下:

    1)输入平稳分布$\pi(x_1,x_2)$,设定状态转移次数阈值$n_1$,需要的样本个数$n_2$

    2)随机初始化初始状态值$x_1^{(0)}$和$x_2^{(0)}$

    3)for $t = 0$ to $n_1 +n_2-1$:

      a) 从条件概率分布$P(x_2|x_1^{(t)})$中采样得到样本$x_2^{t+1}$

      b) 从条件概率分布$P(x_1|x_2^{(t+1)})$中采样得到样本$x_1^{t+1}$

    样本集$\{(x_1^{(n_1)}, x_2^{(n_1)}), (x_1^{(n_1+1)}, x_2^{(n_1+1)}), ...,  (x_1^{(n_1+n_2-1)}, x_2^{(n_1+n_2-1)})\}$即为我们需要的平稳分布对应的样本集。

    整个采样过程中,我们通过轮换坐标轴,采样的过程为:$$(x_1^{(1)}, x_2^{(1)}) \to  (x_1^{(1)}, x_2^{(2)}) \to (x_1^{(2)}, x_2^{(2)}) \to ... \to (x_1^{(n_1+n_2-1)}, x_2^{(n_1+n_2-1)})$$

    用下图可以很直观的看出,采样是在两个坐标轴上不停的轮换的。当然,坐标轴轮换不是必须的,我们也可以每次随机选择一个坐标轴进行采样。不过常用的Gibbs采样的实现都是基于坐标轴轮换的。

3. 多维Gibbs采样

    上面的这个算法推广到多维的时候也是成立的。比如一个n维的概率分布$\pi(x_1,x_2,...x_n)$,我们可以通过在n个坐标轴上轮换采样,来得到新的样本。对于轮换到的任意一个坐标轴$x_i$上的转移,马尔科夫链的状态转移概率为$P(x_i|x_1,x_2,...,x_{i-1},x_{i+1},...,x_n)$,即固定$n-1$个坐标轴,在某一个坐标轴上移动。

    具体的算法过程如下:

    1)输入平稳分布$\pi(x_1,x_2,...,x_n)$或者对应的所有特征的条件概率分布,设定状态转移次数阈值$n_1$,需要的样本个数$n_2$

    2)随机初始化初始状态值$(x_1^{(0)},x_2^{(0)},...,x_n^{(0)}$

    3)for $t = 0$ to $n_1 +n_2-1$:

      a) 从条件概率分布$P(x_1|x_2^{(t)}, x_3^{(t)},...,x_n^{(t)})$中采样得到样本$x_1^{t+1}$

      b) 从条件概率分布$P(x_2|x_1^{(t+1)}, x_3^{(t)}, x_4^{(t)},...,x_n^{(t)})$中采样得到样本$x_2^{t+1}$

      c)...

      d) 从条件概率分布$P(x_j|x_1^{(t+1)}, x_2^{(t+1)},..., x_{j-1}^{(t+1)},x_{j+1}^{(t)}...,x_n^{(t)})$中采样得到样本$x_j^{t+1}$

      e)...

      f) 从条件概率分布$P(x_n|x_1^{(t+1)}, x_2^{(t+1)},...,x_{n-1}^{(t+1)})$中采样得到样本$x_n^{t+1}$

    样本集$\{(x_1^{(n_1)}, x_2^{(n_1)},...,  x_n^{(n_1)}), ...,  (x_1^{(n_1+n_2-1)}, x_2^{(n_1+n_2-1)},...,x_n^{(n_1+n_2-1)})\}$即为我们需要的平稳分布对应的样本集。

    整个采样过程和Lasso回归的坐标轴下降法算法非常类似,只不过Lasso回归是固定$n-1$个特征,对某一个特征求极值。而Gibbs采样是固定$n-1$个特征在某一个特征采样。

    同样的,轮换坐标轴不是必须的,我们可以随机选择某一个坐标轴进行状态转移,只不过常用的Gibbs采样的实现都是基于坐标轴轮换的。

4. 二维Gibbs采样实例

    这里给出一个Gibbs采样的例子。完整代码参见我的github: https://github.com/ljpzzz/machinelearning/blob/master/mathematics/mcmc_3_4.ipynb

    假设我们要采样的是一个二维正态分布$Norm(\mu,\Sigma)$,其中:$$\mu = (\mu_1,\mu_2) = (5,-1)$$$$\Sigma = \left( \begin{array}{ccc}
\sigma_1^2&\rho\sigma_1\sigma_2 \\ 
\rho\sigma_1\sigma_2 &\sigma_2^2 \end{array} \right) =  \left( \begin{array}{ccc}
1&1 \\ 
1&4 \end{array} \right)$$

    而采样过程中的需要的状态转移条件分布为:$$P(x_1|x_2) = Norm\left ( \mu _1+\rho \sigma_1/\sigma_2 \left ( x _2-\mu _2 \right ), (1-\rho ^2)\sigma_1^2 \right )$$$$P(x_2|x_1) = Norm\left ( \mu _2+\rho \sigma_2/\sigma_1 \left ( x _1-\mu _1 \right ), (1-\rho ^2)\sigma_2^2 \right )$$

    具体的代码如下:

  1. from mpl_toolkits.mplot3d import Axes3D
  2. from scipy.stats import multivariate_normal
  3. samplesource = multivariate_normal(mean=[5,-1], cov=[[1,1],[1,4]])
  4.  
  5. def p_ygivenx(x, m1, m2, s1, s2):
  6. return (random.normalvariate(m2 + rho * s2 / s1 * (x - m1), math.sqrt((1 - rho ** 2) * (s2**2))))
  7.  
  8. def p_xgiveny(y, m1, m2, s1, s2):
  9. return (random.normalvariate(m1 + rho * s1 / s2 * (y - m2), math.sqrt((1 - rho ** 2) * (s1**2))))
  10.  
  11. N = 5000
  12. K = 20
  13. x_res = []
  14. y_res = []
  15. z_res = []
  16. m1 = 5
  17. m2 = -1
  18. s1 = 1
  19. s2 = 2
  20.  
  21. rho = 0.5
  22. y = m2
  23.  
  24. for i in xrange(N):
  25. for j in xrange(K):
  26. x = p_xgiveny(y, m1, m2, s1, s2)
  27. y = p_ygivenx(x, m1, m2, s1, s2)
  28. z = samplesource.pdf([x,y])
  29. x_res.append(x)
  30. y_res.append(y)
  31. z_res.append(z)
  32.  
  33. num_bins = 50
  34. plt.hist(x_res, num_bins, normed=1, facecolor='green', alpha=0.5)
  35. plt.hist(y_res, num_bins, normed=1, facecolor='red', alpha=0.5)
  36. plt.title('Histogram')
  37. plt.show()

    输出的两个特征各自的分布如下:

    然后我们看看样本集生成的二维正态分布,代码如下:

  1. fig = plt.figure()
  2. ax = Axes3D(fig, rect=[0, 0, 1, 1], elev=30, azim=20)
  3. ax.scatter(x_res, y_res, z_res,marker='o')
  4. plt.show()

    输出的正态分布图如下:

5. Gibbs采样小结

    由于Gibbs采样在高维特征时的优势,目前我们通常意义上的MCMC采样都是用的Gibbs采样。当然Gibbs采样是从M-H采样的基础上的进化而来的,同时Gibbs采样要求数据至少有两个维度,一维概率分布的采样是没法用Gibbs采样的,这时M-H采样仍然成立。

    有了Gibbs采样来获取概率分布的样本集,有了蒙特卡罗方法来用样本集模拟求和,他们一起就奠定了MCMC算法在大数据时代高维数据模拟求和时的作用。MCMC系列就在这里结束吧。

(欢迎转载,转载请注明出处。欢迎沟通交流: liujianping-ok@163.com)

MCMC(四)Gibbs采样的更多相关文章

  1. MCMC:Gibbs 采样(matlab 实现)

    MCMC: The Gibbs Sampler 多元高斯分布的边缘概率和条件概率 Marginal and conditional distributions of multivariate norm ...

  2. 文本主题模型之LDA(二) LDA求解之Gibbs采样算法

    文本主题模型之LDA(一) LDA基础 文本主题模型之LDA(二) LDA求解之Gibbs采样算法 文本主题模型之LDA(三) LDA求解之变分推断EM算法(TODO) 本文是LDA主题模型的第二篇, ...

  3. MC, MCMC, Gibbs采样 原理&实现(in R)

    本文用讲一下指定分布的随机抽样方法:MC(Monte Carlo), MC(Markov Chain), MCMC(Markov Chain Monte Carlo)的基本原理,并用R语言实现了几个例 ...

  4. 如何做Gibbs采样(how to do gibbs-sampling)

    原文地址:<如何做Gibbs采样(how to do gibbs-sampling)> 随机模拟 随机模拟(或者统计模拟)方法最早有数学家乌拉姆提出,又称做蒙特卡洛方法.蒙特卡洛是一个著名 ...

  5. Gibbs采样

    (学习这部分内容大约需要50分钟) 摘要 Gibbs采样是一种马尔科夫连蒙特卡洛(Markov Chain Monte Carlo, MCMC)算法, 其中每个随机变量从给定剩余变量的条件分布迭代地重 ...

  6. 关于LDA的gibbs采样,为什么可以获得正确的样本?

    算法里面是随机初始了一个分布,然后进行采样,然后根据每次采样的结果去更新分布,之后接着采样直到收敛. 1.首先明确一下MCMC方法. 当我们面对一个未知或者复杂的分布时,我们经常使用MCMC方法来进行 ...

  7. 【转载】MCMC和Gibbs Sampling算法

    转载随笔,原贴地址:MCMC和Gibbs Sampling算法 本文是整理网上的几篇博客和论文所得出来的,所有的原文连接都在文末. 在科学研究中,如何生成服从某个概率分布的样本是一个重要的问题.如果样 ...

  8. Gibbs 采样的应用

    Gibbs 采样的最大作用在于使得对高维连续概率分布的抽样由复杂变得简单. 可能的应用: 计算高维连续概率分布函数的数学期望, Gibbs 采样得到 n 个值,再取均值: 比如用于 RBM:

  9. Gibbs 采样定理的若干证明

    坐标平面上的三点,A(x1,y1),B(x1,y2),C(x2,y1),假设有概率分布 p(x,y)(P(X=x,Y=y) 联合概率),则根据联合概率与条件概率的关系,则有如下两个等式: {p(x1, ...

随机推荐

  1. Match类解析

    Matcher类:使用Matcher类,最重要的一个概念必须清楚:组(Group),在正则表达式中()定义了一个组,由于一个正则表达式可以包含很多的组,所以下面先说说怎么划分组的,以及这些组和组的下标 ...

  2. 【译文】用Spring Cloud和Docker搭建微服务平台

    by Kenny Bastani Sunday, July 12, 2015 转自:http://www.kennybastani.com/2015/07/spring-cloud-docker-mi ...

  3. win7下安装maven3.1.1

    1.下载maven的安装包,下载地址http://maven.apache.org/download.cgi ,在这个页面中,你可以选择要下载的最新版本的maven gz包.我下载的是maven3.1 ...

  4. Java_HelloWorld

    Java_HelloWorld 一.JDK安装与环境变量的设置 可以在甲骨文公司的主页上直接下载. 链接:http://www.oracle.com/technetwork/java/javase/d ...

  5. Android游戏开发实践(1)之NDK与JNI开发04

    Android游戏开发实践(1)之NDK与JNI开发04 有了前面几篇NDK与JNI开发相关基础做铺垫,再来通过代码说明下这方面具体的操作以及一些重要的细节.那么,就继续NDK与JNI的学习总结. 作 ...

  6. Codeforces 506E Mr. Kitayuta's Gift (矩阵乘法,动态规划)

    描述: 给出一个单词,在单词中插入若干字符使其为回文串,求回文串的个数(|s|<=200,n<=10^9) 这道题超神奇,不可多得的一道好题 首先可以搞出一个dp[l][r][i]表示回文 ...

  7. centos快速安装redis

    mkdir redis cd redis wget http://labfile.oss.aliyuncs.com/files0422/redis-2.8.9.tar.gz 解压 tar -xvfz ...

  8. Excel与XML相互转换 - C# 简单实现方案

    Excel与XML相互转换 - C# 简单实现方案 在日常工作中,我需要将数据存储在Excel中进行数据分析和处理,然后再将数据转换为XML格式进行跨平台的数据交换.网上搜索Excel转换为XML的实 ...

  9. Jemter性能测试

    Jmeter 介绍 Jmeter  是一款使用Java开发的,开源免费的,测试工具, 主要用来做功能测试和性能测试(压力测试/负载测试). 而且用Jmeter 来测试 Restful API, 非常好 ...

  10. 【Java基础】String StringBuffer StringBuilder

    String String是不可变的 我们都知道String不是基本数据类型,而是一个对象,并且是final类型的,不可变的.(public final class String) 查看以下代码: S ...