这篇paper将巧妙地将四个loss函数结合在一起,其中每一个loss的功能不同。但这篇paper不够elegant的地方也是loss太多!在本文中,我采用散文的写作方法谈谈自己对这篇paper的理解,其实质就是“想到哪,写到哪!”

 

如上图所示,(a)输入图像;(b)用随机square模板遮住输入图像一部分;(c)复原得到的图像。理想状态下,我们希望复原出的图像与输入图像完全一致(视觉上 and 语义上)。哈哈,这个不是很简单吗,我们可以用L2范数regularize输入图像与输出图像,理想状态下,输入图像与复原出的图像完全一致!恭喜你,回答正确!作者也这样试了试,结果如Figure 3 (c)所示。

哎呀!理想与现实差距有点大哦!仔细观察一下Figure 3 (c),我们可以得出结论:复原结果模糊、复原得到的patch有点像、复原patch的边缘清晰可见。其实,这个也很好理解,L2范数倾向于去平均,这样会丢失很多高频、低频信息,使得图像较为模糊、细节丢失。简而言之,复原图像与真实图像差距有点大!换句话说,就是复原图像看起来不真实!

这时候我脑海中浮现出一个概念,GAN的判决器不就是判定随机噪声生成图像(或者patch)是否真实的吗?哈哈,我们可以把这个思路搬过来哦!如果判决器判断不出来复原的图像是否是原图,这不就表明,复原得到的图像与原始图像一致吗?当然了,L2 loss还是必须的(可以理解为一个多任务学习)。说干就干,我直接判断生成的patch的是否真实,于是得到了Figure 3 (d)。看起来比之前好多了哦!细细看来,发现这个图片不是很真实,生成的patch在整幅图像中显得不协调!

不要灰心!生成的patch在整幅图像中看起来不协调,换一种理解方式就是:整幅图像看起来不真实吗?索性我在上述两个loss的基础上,再加上一个生成的全局图像是否真实的判定。这样是不是就保证了生成的patch在整幅图像中看起来比较自然些呢?请看Figure 3 (f)美女的大致轮廓已经显现,看起来也自然的多了!

等等!对于我这个美女控来说,怎么允许美女的脸颊有褶皱呢,参看Figure 3 (f)?男的吧,我忍了!哈哈!怎么办呢?我已经耗尽脑汁了!在山重水复疑无路时,我脑海中忽然浮现出一句诗“横看成岭侧成峰”。于是,我决定大胆试试,遮住美女或者帅哥的一只眼睛,看看复原的这只眼是不是与另外一只眼搭配呢?请看下图

在(c)中,我们可以明显感觉出,所说两只眼睛单独看没有问题,但是放在帅哥的脸上,怎么那么不自然呢?给人的感觉怪怪的!我们怎么才能使得他们协调一些呢?这个问题可理解为:保证两只眼睛大小一致、五官比例匀称等一些审美上的要求吧!

咯咯!这怎么和语义分割概念那么相似呢?假如,我能够事先知道一些五官布局之类的语义,这不就帮我解决上述问题了吗?说干就干,就给她引入语义信息!!!结果如(d),真是“千呼万唤始出来”哦!总算得到了让我满意的“帅哥”、“美女”图像!!!

说了这么多,我究竟在说的是什么呢?你是在搞图像处理呢,还是在干啥?恩,不能不务正业了,下面给您放出论文中的模型

是不是看着很熟悉的样子哦!Global discriminator就是判断复原图像是否真实的;local discriminator就是判断复原图像patch是否真实的。Parsing network那个是使得得到的人脸五官匀称、整齐的!至于L2 重构,您就自己意会一下吧!这不就是将我刚刚分析的几个要素整合到CNN网络中了吗?原理建模还可以这么理解哦!

明白了这篇paper的基本思路之后,下面就是在特定的数据集上训练我们的网络,当然了这个数据集必须包含作者需要的信息:GT parsing。作者选取的数据集是,CelebA。实际上,训练好这个网络之后,我们可以拿自己的人脸试试哦,看看是变帅了呢,还是变亮了呢?

说句话外话,Loss函数太多,每一个loss函数的权值怎么选,这个的确是个“黯然销魂”的问题,作者只是给出了权重,但是没有给出一些原则哦!如果您对鸟脸比较感兴趣,估计您得自己选择这些参数了哦!也许,您一下子就能选到了最佳组合,也许您在纠结到底什么权重是合适的呢?

以上就是自己一些粗浅的看法,不当之处,敬请各位批评指正!!!

论文笔记 Generative Face Completion的更多相关文章

  1. Face Aging with Conditional Generative Adversarial Network 论文笔记

    Face Aging with Conditional Generative Adversarial Network 论文笔记 2017.02.28  Motivation: 本文是要根据最新的条件产 ...

  2. Deep Learning论文笔记之(四)CNN卷积神经网络推导和实现(转)

    Deep Learning论文笔记之(四)CNN卷积神经网络推导和实现 zouxy09@qq.com http://blog.csdn.net/zouxy09          自己平时看了一些论文, ...

  3. 论文笔记之:Visual Tracking with Fully Convolutional Networks

    论文笔记之:Visual Tracking with Fully Convolutional Networks ICCV 2015  CUHK 本文利用 FCN 来做跟踪问题,但开篇就提到并非将其看做 ...

  4. Deep Learning论文笔记之(八)Deep Learning最新综述

    Deep Learning论文笔记之(八)Deep Learning最新综述 zouxy09@qq.com http://blog.csdn.net/zouxy09 自己平时看了一些论文,但老感觉看完 ...

  5. Twitter 新一代流处理利器——Heron 论文笔记之Heron架构

    Twitter 新一代流处理利器--Heron 论文笔记之Heron架构 标签(空格分隔): Streaming-process realtime-process Heron Architecture ...

  6. Deep Learning论文笔记之(六)Multi-Stage多级架构分析

    Deep Learning论文笔记之(六)Multi-Stage多级架构分析 zouxy09@qq.com http://blog.csdn.net/zouxy09          自己平时看了一些 ...

  7. Multimodal —— 看图说话(Image Caption)任务的论文笔记(一)评价指标和NIC模型

    看图说话(Image Caption)任务是结合CV和NLP两个领域的一种比较综合的任务,Image Caption模型的输入是一幅图像,输出是对该幅图像进行描述的一段文字.这项任务要求模型可以识别图 ...

  8. 论文笔记(1):Deep Learning.

    论文笔记1:Deep Learning         2015年,深度学习三位大牛(Yann LeCun,Yoshua Bengio & Geoffrey Hinton),合作在Nature ...

  9. 论文笔记(2):A fast learning algorithm for deep belief nets.

    论文笔记(2):A fast learning algorithm for deep belief nets. 这几天继续学习一篇论文,Hinton的A Fast Learning Algorithm ...

随机推荐

  1. linux防火墙基本操作

    1.查看防火墙运行状态 # firewall-cmd --state 或者 # systemctl status firewalld.service .关闭防火墙 # systemctl stop f ...

  2. Vuejs实例-01使用vue-cli脚手架搭建Vue.js项目

    [TOC] 1. 前言 vue-cli 一个简单的构建Vue.js项目的命令行界面 整体过程: $ npm install -g vue-cli $ vue init webpack vue-admi ...

  3. python requests 模拟登陆网站,抓取数据

    抓取页面数据的时候,有时候我们需要登陆才可以获取页面资源,那么我们需要登陆以后才可以跳转到对应的资源页面,那么我们需要通过模拟登陆,登陆成功以后再次去抓取对应的数据. 首先我们需要通过手动方式来登陆一 ...

  4. bootstrap学习笔记之导航条基础

    导航条基础 导航条(navbar)和上一节介绍的导航(nav),就相差一个字,多了一个"条"字.其实在Bootstrap框架中他们还是明显的区别.在导航条(navbar)中有一个背 ...

  5. Ubuntu 挂载硬盘分区

    1.先查看当前硬盘分区状态,命令sudo fdisk -l 大致如下:设备 启动 Start 末尾 扇区 Size Id 类型/dev/sda1 2048 206847 204800 100M 7 H ...

  6. Java Maps

    HashMap 是线程不安全的,主要对于写操作来说,两个以上线程同时写入Map会被互相覆盖.线程安全指的保证对同一个map的写入操作按照顺序进行,一次只能一个线程更改.比如向HashMap里put(k ...

  7. 第 18 章 高可用设计之 MySQL 监控

    前言: 一个经过高可用可扩展设计的 MySQL 数据库集群,如果没有一个足够精细足够强大的监控系统,同样可能会让之前在高可用设计方面所做的努力功亏一篑.一个系统,无论如何设计如何维护,都无法完全避免出 ...

  8. R语言的导数计算(转)

    转自:http://blog.fens.me/r-math-derivative/ 前言 高等数学是每个大学生都要学习的一门数学基础课,同时也可能是考完试后最容易忘记的一门知识.我在学习高数的时候绞尽 ...

  9. JVM学习笔记三:垃圾收集器与内存分配策略

    内存回收与分配重点关注的是堆内存和方法区内存(程序计数器占用小,虚拟机栈和本地方法栈随线程有相同的生命周期). 一.判断对象是否存活? 1. 引用计数算法 优势:实现简单,效率高. 致命缺陷:无法解决 ...

  10. NopCommerce(3.9)作业调度插件

    NopCommerce(3.9)作业调度插件视频教程录制完成,下面是插件源码下载地址和插件视频教程下载地址:插件下载地址: http://www.nopcommerce.com/p/2752/jobs ...