伽罗瓦域(有限域)GFq^12上元素的1→2→4→12塔式扩张(1)------第一次扩张
伽罗瓦域是抽象代数下的域论分支中的内容,这部分想必很多人都比较熟悉,此处不再赘述。
最近,国密算法中的SM2和SM9已经成为国际标准,其中SM9算法在椭圆曲线离散对数难题的基础上,添加了若干个双线性配对难题来保证安全性。
配对的过程中,除去群G1中的元素与SM2算法一样在素域下之外,群G2中的元素为GFq2域,群GT中的元素为GFq12域。
SM9算法大部分运算都在阔域中进行,而塔式扩张的意义在于将阔域中的元素用基域中的元素进行表示和计算。这里先按照塔式扩张的顺序(1→2→4→12)探讨一下阔域中的元素计算。
1. (1)
塔式扩张中的(1),就是指基域。在SM9算法中,是素域Fq,其中q是256位BN曲线的基域特征值。
Fq域下的元素运算,与我们日常的加减乘除运算并无差异,略去不谈。
2. (2)
塔式扩张中的(2),即域Fq2。这是从素域向二次域的第一次扩张,扩张公式如下:
Fq2[μ] = Fq[μ] /( μ2 - α), 其中,α = -2
即:该次扩张的即约多项式为 x2 - α, α = -2
下面以具体的例子来说明该次扩张。
SM9规范第5部分中,群 G2 的生成元 P2 = (xP2, yP2):
坐标 xP2:( 85AEF3D0 78640C98 597B6027 B441A01F F1DD2C19 0F5E93C4 54806C11 D8806141 , 37227552 92130B08 D2AAB97F D34EC120 EE265948 D19C17AB F9B7213B AF82D65B )
坐标 yP2:( 17509B09 2E845C12 66BA0D26 2CBEE6ED 0736A96F A347C8BD 856DC76B 84EBEB96 , A7CF28D5 19BE3DA6 5F317015 3D278FF2 47EFBA98 A71A0811 6215BBA5 C999A7C7 )
此处,点P2的x轴和y轴均为域Fq2下的元素,且高维在前,低维在后。
按照这种表示顺序,此处定义两个域Fq2下的元素:
X = (a, b)
Y = (c, d)
即:
X = a * μ1 + b * μ0 = a * μ + b
Y = c * μ1 + d * μ0 = c * μ + d
加法和减法计算就是对应维度的数值在素域q下的加和减:
X + Y = (a, b) + (c, d) = (a + c, b + d)
X - Y = (a, b) - (c, d) = (a - c, b - d)
乘法:
X * Y = (a, b) * (c, d)
= (a * μ + b) * (c * μ + d)
= (a * c * μ2 + (a * d + b * c)μ + b * d) mod ( μ2 - α)
= -2 *a * c + (a * d + b * c)μ + b * d
= (a * d + b * c)μ + (b * d - 2 * a * c)
即:
X * Y = (a, b) * (c, d) = (a * d + b * c , b * d - 2 * a * c)
其中,最终结果中的 * 运算均为素域q下的乘法运算。
求逆:
计算 X-1 = (a, b)-1
假设结果为(x, y)
则有,(a, b) * (x, y) = (0, 1)
(0, 1)为域Fq2下的单位元,相当于素域q下的 1。
将上式展开
(a, b) * (x, y) = (a * y + b * x)μ + (b * y - 2 * a * x)
= (a * y + b * x , b * y - 2 * a * x) = (0, 1)
相当于求解二元一次方程。
a * y + b * x = 0
b * y - 2 * a * x = 1
求解x和y的过程省去不说,可以得到求逆操作的结果为
X-1 = (a , b)-1 = ((-a) / (b2 + 2 * a2) , b / (b2 + 2 * a2))
其中相关元素与计算均在素域q下进行。
以上便是塔式扩张的第一次扩张后的元素计算公式。
如上可知,扩张的实际作用是将阔域元素使用基域下的元素表示并按照基域下的运算规则进行运算。
SM9算法的群G2中的点加与倍点计算,虽然与SM2的素域下运算公式一致,但实际处理时,所有元素均按照上面的公式在域Fq2下进行。
后面再画两个篇幅探讨第二次扩张2→4和第三次扩张→12,并推导4次阔域和12次阔域下的元素计算公式。
伽罗瓦域(有限域)GFq^12上元素的1→2→4→12塔式扩张(1)------第一次扩张的更多相关文章
- 伽罗瓦域(有限域)GFq^12上元素的1→2→4→12塔式扩张(2)------第二次扩张
接上文https://www.cnblogs.com/heshuchao/p/8196307.html 继续探讨塔式扩张的第二部分,即1→2→4→12中2 → 4的元素扩张表示方式与计算公式推导. 3 ...
- 如何在Vue中,当鼠标hover上元素时,给元素加遮罩层
介绍 当鼠标hover 上元素时,给元素加一层遮罩层. 效果图 使用 import VueHoverMask from 'vue-hover-mask' export default { compon ...
- 在VS13上编译通过的代码放在12上编译-错误:l __dtoui3 referenced in function _event_debug_map_HT_GROW
在VS13上编译通过的代码放在12上编译 遇到错误:l __dtoui3 referenced in function _event_debug_map_HT_GROW 1>------ 已启动 ...
- 获取html上元素的真正坐标
使用HTML元素的style.left,style.top,style.width,style.height以及width,height属性,都不能获得元素的真正位置与大小,这些属性取出来的都是原来的 ...
- Appium+python自动化14-查看webview上元素(DevTools)
前言 app上webview的页面实际上是启用的chrome浏览器的内核加载的,如何把手机的网页加载到电脑上,电脑的chrome浏览器上有个开发模式DevTools,是可以方便调试的. 一.环境准备 ...
- Appium+python自动化14-查看webview上元素(DevTools)【转载】
前言 app上webview的页面实际上是启用的chrome浏览器的内核加载的,如何把手机的网页加载到电脑上,电脑的chrome浏览器上有个开发模式DevTools,是可以方便调试的. 一.环境准备 ...
- Appium如何查看webview上元素
现在大部分app都是混合式的native+webview,对应native上的元素通过uiautomatorviewer很容易定位到,webview上的元素就无法识别了: 那么如何定位webview上 ...
- leetcode:Minimum Path Sum(路线上元素和的最小值)【面试算法题】
题目: Given a m x n grid filled with non-negative numbers, find a path from top left to bottom right w ...
- python 不同集合上元素的迭代 chain()
itertools.chain()可以接受一个可迭代对象列表作为输入,并返回一个迭代器,有效的屏蔽掉在多个容器中迭代细节 >>> from itertools import chai ...
随机推荐
- 【原创】1、简单理解微信小程序
先看下网站的运行方式: 而小程序是这样: what?就这样?是的,就这样.那小程序官方提供的Wafer,还有Wafer2...想太多了,抛弃它们吧.不应当为了解决一个简单的旧问题而去整一个复杂的新问题 ...
- C#爬虫系列(一)——国家标准全文公开系统
网上有很多Python爬虫的帖子,不排除很多培训班借着AI的概念教Python,然后爬网页自然是其中的一个大章节,毕竟做算法分析没有大量的数据怎么成. C#相比Python可能笨重了些,但实现简单爬虫 ...
- nyoj 63 小猴子下落 思维
nyoj 63 小猴子下落 题目链接: http://acm.nyist.net/JudgeOnline/problem.php?pid=63 思路: 不需要用指针创建二叉树,也不需要用数组来模拟二叉 ...
- Python的Web应用框架--Django
一:简介 python的web框架有很多,个人查了一下,有Django.Pylons. Tornado.Bottle和Flask等,其中使用人数最多的是Django,而我学习Django也是因为ope ...
- java基础部分的简单应用
牛刀小试,MMP:嘿嘿,如有转载,请声明地址http://www.cnblogs.com/jinmoon/: 图形类,点类,三角形类,汽车类,接口:运用继承,抽象类,接口,多态:已知点类三点,输出三点 ...
- 基于QT的异质链表实例
所谓的异质链表就是的节点元素类型能够不同.本实例採用C++抽象类和多态实现. #include <QApplication> #include<QPushButton> #in ...
- 利用Photoshop减小照片景深
有时我们想拍出景深较小的照片,可是因为拍摄设备不支持,或者拍摄时没有调好參数,效果不理想. 这时能够借助Photoshop进行后期调整.一定程度上弥补缺陷.用到的主要是PS中的滤镜-->模糊-- ...
- Windows 下Oracle database 9i 64bit 仅仅有 Windows Itanium 64bit
Windows 下Oracle database 9i 64bit 仅仅有 Windows Itanium 64bit,没有Windows x86-64bit的 详细请见例如以下的certificat ...
- jquery查找元素
一:查找元素 * 所有元素 element 该名称的所有元素(p,input) #id 拥有指定id属性的元素 .class 拥有所有指定class属性的元素 selector1,selector2 ...
- Python 项目实践一(外星人入侵)第一篇
python断断续续的学了一段实践,基础课程终于看完了,现在跟着做三个小项目,第一个是外星人入侵的小游戏: 一 Pygame pygame 是一组功能强大而有趣的模块,可用于管理图形,动画乃至声音,让 ...