Purpose: Finding Similar Users

Method:  Euclidean Distance Score

ex2.py

critics={'Lisa Rose': {'Lady in the Water': 2.5, 'Snakes on a Plane': 3.5,
'Just My Luck': 3.0, 'Superman Returns': 3.5, 'You, Me and Dupree': 2.5,
'The Night Listener': 3.0},
'Gene Seymour': {'Lady in the Water': 3.0, 'Snakes on a Plane': 3.5,
'Just My Luck': 1.5, 'Superman Returns': 5.0, 'The Night Listener': 3.0,
'You, Me and Dupree': 3.5},
'Michael Phillips': {'Lady in the Water': 2.5, 'Snakes on a Plane': 3.0,
'Superman Returns': 3.5, 'The Night Listener': 4.0},
'Claudia Puig': {'Snakes on a Plane': 3.5, 'Just My Luck': 3.0,
'The Night Listener': 4.5, 'Superman Returns': 4.0,
'You, Me and Dupree': 2.5},
'Mick LaSalle': {'Lady in the Water': 3.0, 'Snakes on a Plane': 4.0,
'Just My Luck': 2.0, 'Superman Returns': 3.0, 'The Night Listener': 3.0,
'You, Me and Dupree': 2.0},
'Jack Matthews': {'Lady in the Water': 3.0, 'Snakes on a Plane': 4.0,
'The Night Listener': 3.0, 'Superman Returns': 5.0, 'You, Me and Dupree': 3.5},
'Toby': {'Snakes on a Plane':4.5,'You, Me and Dupree':1.0,'Superman Returns':4.0}}

from math import sqrt

# Returns a distance-based similarity score for person1 and person2
def sim_distance(prefs,person1,person2):
# Get the list of shared_items
si={}
for item in prefs[person1]:
if item in prefs[person2]: si[item]=1

# if they have no ratings in common, return 0
if len(si)==0: return 0

# Add up the squares of all the differences
sum_of_squares=sum([pow(prefs[person1][item]-prefs[person2][item],2)
for item in prefs[person1] if item in prefs[person2]])

return 1/(1+sqrt(sum_of_squares))

test

>>> import imp
>>> import ex2
>>> imp.reload(ex2)
<module 'ex2' from '/home/qiu/桌面/collective programming/code/PCI_Code Folder/chapter2/ex2.py'>
>>> ex2.sim_distance(ex2.critics,'Lisa Rose','Gene Seymour')
0.29429805508554946

problems in the test

1.>>> reload(ex2)

NameError: name 'reload' is not defined

solution: For python 3.6

>>> import imp
>>> import ex2
>>> imp.reload(ex2)

Finding Similar Users-Euclidean Distance Score的更多相关文章

  1. SSE图像算法优化系列二十五:二值图像的Euclidean distance map(EDM)特征图计算及其优化。

    Euclidean distance map(EDM)这个概念可能听过的人也很少,其主要是用在二值图像中,作为一个很有效的中间处理手段存在.一般的处理都是将灰度图处理成二值图或者一个二值图处理成另外一 ...

  2. 相似度度量:欧氏距离与余弦相似度(Similarity Measurement Euclidean Distance Cosine Similarity)

    在<机器学习---文本特征提取之词袋模型(Machine Learning Text Feature Extraction Bag of Words)>一文中,我们通过计算文本特征向量之间 ...

  3. GAN量化评估方法——IS(Inception Score)和FID(Frechet Inception Distance score)

    生成模型产生的是高维的复杂结构数据,它们不同于判别模型,很难用简单的指标来评估模型的好坏.下面介绍两种当前比较流行的评估生成模型的指标(仅判别图像):IS(Inception Score)和FID(F ...

  4. Finding Similar Items 文本相似度计算的算法——机器学习、词向量空间cosine、NLTK、diff、Levenshtein距离

    http://infolab.stanford.edu/~ullman/mmds/ch3.pdf 汇总于此 还有这本书 http://www-nlp.stanford.edu/IR-book/ 里面有 ...

  5. 2019年牛客多校第一场 C题Euclidean Distance 暴力+数学

    题目链接 传送门 题意 给你\(n\)个数\(a_i\),要你在满足下面条件下使得\(\sum\limits_{i=1}^{n}(a_i-p_i)^2\)最小(题目给的\(m\)只是为了将\(a_i\ ...

  6. 2019 牛客多校第一场 C Euclidean Distance ?

    题目链接:https://ac.nowcoder.com/acm/contest/881/C 题目大意 给定 m 和 n 个整数 ai,$-m \leq a_i \leq m$,求$\sum\limi ...

  7. Chi Square Distance

    The chi squared distance d(x,y) is, as you already know, a distance between two histograms x=[x_1,.. ...

  8. paper 114:Mahalanobis Distance(马氏距离)

    (from:http://en.wikipedia.org/wiki/Mahalanobis_distance) Mahalanobis distance In statistics, Mahalan ...

  9. 相似性度量(Similarity Measurement)与“距离”(Distance)

    在做分类时常常需要估算不同样本之间的相似性度量(Similarity Measurement),这时通常采用的方法就是计算样本间的“距离”(Distance).采用什么样的方法计算距离是很讲究,甚至关 ...

随机推荐

  1. ABPZero中的Name和SurName处理

    使用ABPzero的朋友们都知道,User表中有Name和Surname两个字段,这两个字段对于国内的用户来说相当的不友好. 我们在尝试了很多的方法之后,发现无法完美将他们干掉. 所以尝试使用了一个比 ...

  2. Azure IoT 技术研究系列4-Azure IoT Hub的配额及缩放级别

    上两篇博文中,我们介绍了将设备注册到Azure IoT Hub,设备到云.云到设备之间的通信: Azure IoT 技术研究系列2-设备注册到Azure IoT Hub Azure IoT 技术研究系 ...

  3. 笔记整理:计算CPU使用率 ----linux 环境编程 从应用到内核

    linux 提供time命令统计进程在用户态和内核态消耗的CPU时间: [root@localhost ~]# time sleep real 0m2.001s user 0m0.001s sys 0 ...

  4. js中元素(图片)切换和隐藏显示问题

    这个知识点其实也简单,(当然是在理清思路的情况下),在没预习的情况下听的还真是艰难,上课以来唯一的一次懵逼了一天,感觉乱乱的,全是新属性,所以今晚的我破天荒的熬夜敲代码,一定要弄懂! 现在就来梳理下头 ...

  5. Linux系统OOM killer机制详解

    介绍: Linux下面有个特性叫OOM killer(Out Of Memory killer),会在系统内存耗尽的情况下出现,选择性的干掉一些进程以求释放一些内存.广大从事Linux方面的IT农民工 ...

  6. postgres导入其他数据库数据

    最近对postgres数据库进行深入研究,将原来项目中使用的sqlserver数据库中的数据表导入postgres,网上搜索postgres数据导入,除空间数据库可以通过PostGIS 2.0 Sha ...

  7. 使用Dotfuscator加密混淆程序以及如何脱壳反编译

    混淆演示 首先介绍如何使用Dotfuscator对.net程序加密码混淆/加壳 C#或vb.net编写的应用程序或DLL. 这里随便创建了一个C#的命令行控制台程序.程序很简单,对当前的时间进行了AE ...

  8. python中从文件中读取数据

    # average5.py def main(): fileName = input("What file are the numbers in?") infile = open( ...

  9. MNIST机器学习

    MNIST是一个入门级的计算机视觉数据集,它包含各种手写数字图片: 1. MNIST数据集 MNIST,是不是听起来特高端大气,不知道这个是什么东西? == 手写数字分类问题所要用到的(经典)MNIS ...

  10. Saltstack自动化运维

    Saltstack三大功能 1,远程执行 2,配置管理(状态) 3,云管理 四种运行方式: Local         本地 Minion/Master C/S Syndic  代理模式 Salt S ...