GBDT (Gradient Boosting Decision Tree)属于集成学习中的Boosting流派,迭代地训练基学习器 (base learner),当前基学习器依赖于上一轮基学习器的学习结果。 不同于AdaBoost自适应地调整样本的权值分布,GBDT是通过不断地拟合残差 (residual)来“纠错”基学习器的。

1. Gradient Boosting

Gradient Boosting Machine (GBM) 是由大牛Friedman [1,2] 提出来,基本思想非常简单:基学习器存在着分类/回归错误的情况,在下一轮基学习器学习时努力地纠正这个错误。在回归问题中,这个错误被称为残差。比如,在学习样本\((x, y)\)得到一个模型\(f\),预测值为\(\hat{y} = f(x)\);那么残差则为:

\[
y - \hat{y} = y- f(x)
\]

如果定义损失函数为平方损失\(\frac{1}{2}(y-f(x))^2\),那么其梯度为

\[
\frac{\partial \frac{1}{2}(y-f(x))^2}{\partial f(x)} = f(x) - y
\]

可以发现:残差为负梯度方向。对于平方损失,每一步优化是很简单的;但是,对于其他损失函数呢?Friedman利用负梯度近似残差,将Gradient Boosting推广到一般损失函数\(L(y, x)\)。步骤如下:

  1. 计算伪残差 (pseudo-residual),

\[
r_{im} = - \left[ \frac{\partial L(y_i, f(x_i))}{\partial f(x_i)} \right]_{f = f_{m-1}}
\]

  1. 基学习器\(h_m(x)\)拟合样本\(\{ (x_i, r_{im}) \}\);
  2. 计算最优乘子 (multiplier) \(\gamma_m\),使得

\[
\gamma_m = \mathop{\arg \min} \limits_{\gamma} \sum_{i} L(y_i, f_{m-1}(x) + \gamma h_m(x_i))
\]

  1. 更新模型

\begin{equation}
f_m(x) = f_{m-1}(x) + \gamma_m h_m(x)
\label{eq:update}
\end{equation}

如此迭代,直至结束或模型收敛;最后一步得到的模型\(f_M(x)\)即为GBM的最终模型。

2. GBDT

如果基学习器为决策树时,GBM则被称为GBDT。决策树本质上是对特征空间的划分\(\{ R_{jm} \}\),因此基学习器\(h_m(x)\)可改写为
\[
h_m(x) = \sum_j b_{jm} I(x \in R_{jm})
\]
其中,\(b_{jm}\)为预测值,\(I(.)\)为指示函数。那么,式子\eqref{eq:update}可以改写为
\[
f_m(x) = f_{m-1}(x) + \sum_j \gamma_{jm} I(x \in R_{jm})
\]
GBDT的算法步骤如下图所示(图片来自于 ESL [3]):

为了减小过拟合,通过Shrinkage的方式:

\[
f_m(x) = f_{m-1}(x) + \upsilon \cdot \gamma_m h_m(x)
\]

其中,\(\upsilon\)称之为学习率 (learning rate)。经验表明,当学习率\(\upsilon < 0.1\)时,泛化能力远远超过没有Shrinkage的模型(即\(\upsilon =1\))。但是,低学习率同时也带来了更多的迭代次数。

3. 参考资料

[1] Friedman, Jerome H. "Greedy function approximation: a gradient boosting machine." Annals of statistics (2001): 1189-1232.
[2] Friedman, Jerome H. "Stochastic gradient boosting." Computational Statistics & Data Analysis 38.4 (2002): 367-378.
[3] Friedman, Jerome, Trevor Hastie, and Robert Tibshirani. The elements of statistical learning. Springer, Berlin: Springer series in statistics, 2009.
[4] Cheng Li, A Gentle Introduction to Gradient Boosting.

Boosting决策树:GBDT的更多相关文章

  1. 随机森林(Random Forest),决策树,bagging, boosting(Adaptive Boosting,GBDT)

    http://www.cnblogs.com/maybe2030/p/4585705.html 阅读目录 1 什么是随机森林? 2 随机森林的特点 3 随机森林的相关基础知识 4 随机森林的生成 5 ...

  2. 机器学习之梯度提升决策树GBDT

    集成学习总结 简单易学的机器学习算法——梯度提升决策树GBDT GBDT(Gradient Boosting Decision Tree) Boosted Tree:一篇很有见识的文章 https:/ ...

  3. Ensemble Learning 之 Gradient Boosting 与 GBDT

    之前一篇写了关于基于权重的 Boosting 方法 Adaboost,本文主要讲述 Boosting 的另一种形式 Gradient Boosting ,在 Adaboost 中样本权重随着分类正确与 ...

  4. [机器学习]梯度提升决策树--GBDT

    概述 GBDT(Gradient Boosting Decision Tree) 又叫 MART(Multiple Additive Regression Tree),是一种迭代的决策树算法,该算法由 ...

  5. Boosting算法总结(ada boosting、GBDT、XGBoost)

    把之前学习xgb过程中查找的资料整理分享出来,方便有需要的朋友查看,求大家点赞支持,哈哈哈 作者:tangg, qq:577305810 一.Boosting算法 boosting算法有许多种具体算法 ...

  6. 梯度提升决策树(GBDT)

    1.提升树 以决策树为基函数的提升方法称为提升树.决策树可以分为分类树和回归树.提升树模型可以表示为决策树的加法模型. 针对不同的问题的提升术算法的主要区别就是损失函数的不同,对于回归问题我们选用平方 ...

  7. Bagging和Boosting 概念及区别

    Bagging和Boosting都是将已有的分类或回归算法通过一定方式组合起来,形成一个性能更加强大的分类器,更准确的说这是一种分类算法的组装方法.即将弱分类器组装成强分类器的方法. 首先介绍Boot ...

  8. Bagging和Boosting的区别

    转:http://www.cnblogs.com/liuwu265/p/4690486.html Bagging和Boosting都是将已有的分类或回归算法通过一定方式组合起来,形成一个性能更加强大的 ...

  9. Boosting和Bagging的异同

    二者都是集成学习算法,都是将多个弱学习器组合成强学习器的方法. 1.Bagging (主要关注降低方差) Bagging即套袋法,其算法过程如下: A)从原始样本集中抽取训练集.每轮从原始样本集中使用 ...

随机推荐

  1. jQuery小测的总结

    1.在div元素中,包含了一个<span>元素,通过has选择器获取<div>元素中的<span>元素的语法是? 提示使用has() 答案: $(div:has(s ...

  2. windows下nginx的安装及使用方法入门

    nginx功能之一可以启动一个本地服务器,通过配置server_name和root目录等来访问目标文件 一. 下载 http://nginx.org/   下载后解压   二. 修改配置文件 ngin ...

  3. ES6 对let声明的一点思考

    说到ES6的let变量声明,我估计很多人会想起下面几个主要的特点: 没有变量声明提升 拥有块级作用域 暂时死区 不能重复声明 很多教程和总结基本都说到了这几点(说实话大部分文章都大同小异,摘录的居多) ...

  4. 记因PHP的内存溢出导致的事故之解决

    如果对您有用记得关注,更多干货. 今天上午刚到公司,就有同事在公司群里反映某个计划任务出现问题了.我就怀着刨根问底的心,去查看了log.发现挺有意思的一个问题,PHP内存溢出导致脚本执行失败.那就一起 ...

  5. 浩哥解析MyBatis源码(十一)——Parsing解析模块之通用标记解析器(GenericTokenParser)与标记处理器(TokenHandler)

    原创作品,可以转载,但是请标注出处地址:http://www.cnblogs.com/V1haoge/p/6724223.html 1.回顾 上面的几篇解析了类型模块,在MyBatis中类型模块包含的 ...

  6. 统计学习方法:KNN

    作者:桂. 时间:2017-04-19  21:20:09 链接:http://www.cnblogs.com/xingshansi/p/6736385.html 声明:欢迎被转载,不过记得注明出处哦 ...

  7. 感觉不止被Q了一下,还不知道被谁套了一个虚弱

    最近身体出现了一些问题,导致博客无法正常更新,只能是看身体状态更新了,相信用不了半个月就会满血复活的,请谅解 Joker在这里提醒大家  身体是革命的本钱,不要透支,不要过度消耗

  8. OpenCV畸变校正原理以及损失有效像素原理分析

    上一篇博客简要介绍了一下常用的张正友标定法的流程,其中获取了摄像机的内参矩阵K,和畸变系数D. 1.在普通相机cv模型中,畸变系数主要有下面几个:(k1; k2; p1; p2[; k3[; k4; ...

  9. Vue 事件驱动和依赖追踪

    之前关于 Vue 数据绑定原理的一点分析,最近需要回顾,就顺便发到随笔上了 在之前实现一个自己的Mvvm中,用 setter 来观测model,将界面上所有的 viewModel 绑定到 model ...

  10. 跨语言时区处理与Epoch

    国际化通用程序或标准协议通常都涉及到时区问题,比如最近项目用到的OIDC(OpenID Connect). OIDC基于OAuth2协议,其id_token中包含了exp来表达该Token的过期时间, ...