Targeted Learning R Packages for Causal Inference and Machine Learning(转)
Targeted learning methods build machine-learning-based estimators of parameters defined as features of the probability distribution of the data, while also providing influence-curve or bootstrap-based confidence internals. The theory offers a general template for creating targeted maximum likelihood estimators for a data structure, nonparametric or semiparametric statistical model, and parameter mapping. These estimators of causal inference parameters are double robust and have a variety of other desirable statistical properties.
Targeted maximum likelihood estimation built on the loss-based “super learning” system such that lower-dimensional parameters could be targeted (e.g., a marginal causal effect); the remaining bias for the (low-dimensional) target feature of the probability distribution was removed. Targeted learning for effect estimation and causal inference allows for the complete integration of machine learning advances in prediction while providing statistical inference for the target parameter(s) of interest. Further details about these methods can be found in the many targeted learning papers as well as the 2011 targeted learning book.
Practical tools for the implementation of targeted learning methods for effect estimation and causal inference have developed alongside the theoretical and methodological advances. While some work has been done to develop computational tools for targeted learning in proprietary programming languages, such as SAS, the majority of the code has been built in R.
Of key importance are the two R packages SuperLearner and tmle. Ensembling with SuperLearner allows us to use many algorithms to generate an ideal prediction function that is a weighted average of all the algorithms considered. The SuperLearner package, authored by Eric Polley (NCI), is flexible, allowing for the integration of dozens of prespecified potential algorithms found in other packages as well as a system of wrappers that provide the user with the ability to design their own algorithms, or include newer algorithms not yet added to the package. The package returns multiple useful objects, including the cross-validated predicted values, final predicted values, vector of weights, and fitted objects for each of the included algorithms, among others.
Below is sample code with the ensembling prediction package SuperLearner using a small simulated data set.
library(SuperLearner)
##Generate simulated data##
set.seed(27)
n<-500
data <- data.frame(W1=runif(n, min = .5, max = 1),
W2=runif(n, min = 0, max = 1),
W3=runif(n, min = .25, max = .75),
W4=runif(n, min = 0, max = 1))
data <- transform(data, #add W5 dependent on W2, W3
W5=rbinom(n, 1, 1/(1+exp(1.5*W2-W3))))
data <- transform(data, #add Y dependent on W1, W2, W4, W5
Y=rbinom(n, 1,1/(1+exp(-(-.2*W5-2*W1+4*W5*W1-1.5*W2+sin(W4))))))
summary(data)
##Specify a library of algorithms##
SL.library <- c("SL.nnet", "SL.glm", "SL.randomForest")
##Run the super learner to obtain predicted values for the super learner as well as CV risk for algorithms in the library##
fit.data.SL<-SuperLearner(Y=data[,6],X=data[,1:5],SL.library=SL.library, family=binomial(),method="method.NNLS", verbose=TRUE)
##Run the cross-validated super learner to obtain its CV risk##
fitSL.data.CV <- CV.SuperLearner(Y=data[,6],X=data[,1:5], V=10, SL.library=SL.library,verbose = TRUE, method = "method.NNLS", family = binomial())
##Cross validated risks##
mean((data[,6]-fitSL.data.CV$SL.predict)^2) #CV risk for super learner
fit.data.SL #CV risks for algorithms in the library
The final lines of code return the cross-validated risks for the super learner as well as each algorithm considered within the super learner. While a trivial example with a small data set and few covariates, these results demonstrate that the super learner, which takes a weighted average of the algorithms in the library, has the smallest cross-validated risk and outperforms each individual algorithm.
The tmle package, authored by Susan Gruber (Reagan-Udall Foundation), allows for the estimation of both average treatment effects and parameters defined by a marginal structural model in cross-sectional data with a binary intervention. This package also includes the ability to incorporate missingness in the outcome and the intervention, use SuperLearner to estimate the relevant components of the likelihood, and use data with a mediating variable. Additionally, TMLE and collaborative TMLE R code specifically tailored to answer quantitative trait loci mapping questions, such as those discussed in Wang et al 2011, is available in the supplementary material of that paper.
The multiPIM package, authored by Stephan Ritter (Omicia, Inc.), is designed specifically for variable importance analysis, and estimates an attributable-risk-type parameter using TMLE. This package also allows the use of SuperLearner to estimate nuisance parameters and produces additional estimates using estimating-equation-based estimators and g-computation. The package includes its own internal bootstrapping function to calculate standard errors if this is preferred over the use of influence curves, or influence curves are not valid for the chosen estimator.
Four additional prediction-focused packages are casecontrolSL, cvAUC, subsemble, and h2oEnsemble, all primarily authored by Erin LeDell (Berkeley). The casecontrolSL package relies on SuperLearner and performs subsampling in a case-control design with inverse-probability-of-censoring-weighting, which may be particularly useful in settings with rare outcomes. The cvAUC package is a tool kit to evaluate area under the ROC curve estimators when using cross-validation. The subsemble package was developed based on a new approach to ensembling that fits each algorithm on a subset of the data and combines these fits using cross-validation. This technique can be used in data sets of all size, but has been demonstrated to be particularly useful in smaller data sets. A new implementation of super learner can be found in the Java-based h2oEnsemble package, which was designed for big data. The package uses the H2O R interface to run super learning in R with a selection of prespecified algorithms.
Another TMLE package is ltmle, primarily authored by Joshua Schwab (Berkeley). This package mainly focuses on parameters in longitudinal data structures, including the treatment-specific mean outcome and parameters defined by a marginal structural model. The package returns estimates for TMLE, g-computation, and estimating-equation-based estimators.
The text above is a modified excerpt from the chapter "Targeted Learning for Variable Importance" by Sherri Rose in the forthcoming Handbook of Big Data (2015) edited by Peter Buhlmann, Petros Drineas, Michael John Kane, and Mark Van Der Laan to be published by CRC Press.
Targeted Learning R Packages for Causal Inference and Machine Learning(转)的更多相关文章
- Deep Learning(花书)教材笔记-Math and Machine Learning Basics(线性代数拾遗)
I. Linear Algebra 1. 基础概念回顾 scalar: 标量 vector: 矢量,an array of numbers. matrix: 矩阵, 2-D array of numb ...
- Introducing: Machine Learning in R(转)
Machine learning is a branch in computer science that studies the design of algorithms that can lear ...
- How do I learn machine learning?
https://www.quora.com/How-do-I-learn-machine-learning-1?redirected_qid=6578644 How Can I Learn X? ...
- 【机器学习Machine Learning】资料大全
昨天总结了深度学习的资料,今天把机器学习的资料也总结一下(友情提示:有些网站需要"科学上网"^_^) 推荐几本好书: 1.Pattern Recognition and Machi ...
- How do I learn mathematics for machine learning?
https://www.quora.com/How-do-I-learn-mathematics-for-machine-learning How do I learn mathematics f ...
- 机器学习算法之旅A Tour of Machine Learning Algorithms
In this post we take a tour of the most popular machine learning algorithms. It is useful to tour th ...
- Machine Learning and Data Mining(机器学习与数据挖掘)
Problems[show] Classification Clustering Regression Anomaly detection Association rules Reinforcemen ...
- 机器学习(Machine Learning)&深度学习(Deep Learning)资料【转】
转自:机器学习(Machine Learning)&深度学习(Deep Learning)资料 <Brief History of Machine Learning> 介绍:这是一 ...
- 机器学习(Machine Learning)&深度学习(Deep Learning)资料(Chapter 2)
##机器学习(Machine Learning)&深度学习(Deep Learning)资料(Chapter 2)---#####注:机器学习资料[篇目一](https://github.co ...
随机推荐
- scss实现不同方向的三角
//定义一个三角的函数 实现不同方向的三角加兼容ie6//第一个参数传入方向//第二个参数传入大小//第三个参数传入颜色//注意:传入参数中间必须逗号分隔@mixin triangle($x, $y: ...
- 从零开始用 Flask 搭建一个网站(二)
从零开始用 Flask 搭建一个网站(一) 介绍了如何搭建 Python 环境,以及 Flask 应用基本项目结构.我们要搭建的网站是管理第三方集成的控制台,类似于 Slack. 本篇主要讲解数据如何 ...
- 1001. Exponentiation高精度运算总结
解题思路 这道题属于高精度乘法运算,要求输入一个实数R一个指数N,求实数R的N次方,由于R有5个数位,而N又特别大,因此用C++自带的数据类型放不下. 解题思路是通过数组储存每次乘积结果和底数的每一位 ...
- Caffe学习系列(四)之--训练自己的模型
前言: 本文章记录了我将自己的数据集处理并训练的流程,帮助一些刚入门的学习者,也记录自己的成长,万事起于忽微,量变引起质变. 正文: 一.流程 1)准备数据集 2)数据转换为lmdb格式 3)计算 ...
- 关于mysql查询区分大小写
使用查询语句时,携带collate utf8_bin 在SQL语句中使用collate 使用collate子句,能够为一个比较覆盖任何默认校对规则.collate可以用于多种SQL语句中,比如wher ...
- jdk动态代理与cglib代理、spring aop代理实现原理解析
原创声明:本博客来源为本人原创作品,绝非他处摘取,转摘请联系博主 代理(proxy)的定义:为某对象提供代理服务,拥有操作代理对象的功能,在某些情况下,当客户不想或者不能直接引用另一个对象,而代理对象 ...
- File Transfer
本博客的代码的思想和图片参考:好大学慕课浙江大学陈越老师.何钦铭老师的<数据结构> 代码的测试工具PTA File Transfer 1 Question 2 Explain First, ...
- 如何给远程主机开启mysql远程登录权限
# 如何给远程主机开启mysql远程登录权限 > 在千锋学习PHP的有些学员会在阿里或者腾讯云去购买自己的云服务器.在初级阶段的项目上线时会遇到一个问题,就是无法使用远程连接工具操作自己线上的m ...
- 2017百度web前端实习生在线笔试题
代码: import java.util.Scanner; public class Main { public static void main(String[] args) { Scanner s ...
- 【lucene系列学习三】用socke把lucene做成一个web服务并实现多线程
首先,参考http://www.cnblogs.com/itlqs/p/6104672.html和http://www.cnblogs.com/itlqs/p/6079301.html 然后,Loca ...