A Bayesian election prediction, implemented with R and Stan
If the media coverage is anything to go by, people are desperate to know who will win the US election on November 8. Polls give us some indication of what's likely to happen, but any single poll isn't a great guide (despite the hype that accompanies some of them). One poll is subject to any number of possible errors, statistical and otherwise: the sample, the methodology, the analysis, or even deliberate bias.
But put a whole bunch of polls together, and you can assemble a more realistic picture of the likely outcome, and the uncertainty associated with it. That's what poll aggregators likeFiveThirtyEight do: take state and national polls, etimate pollster biases and correlations between states, incorporate other influential variables (like economic data) and build a statistical model to forecast the number of electoral college seats won by each candidate (which in US elections, is pretty much the only thing that matters). FiveThirtyEight's methodology is a sound one, and has been largely successful at predicting elections, but the actual details of the process they use is secret, and is thus itself subject to accusations (unfounded, IMO) of bias.
A new election forecast by Pierre-Antoine Kremp, uses a similar (but Bayesian) process to predict the election, and all of the methodology is transparent and open. The forecast is implemented in the R programming language and Stan, the Bayesian computation engine. (The new model wasintroduced by Stan author Andrew Gelman on Slate, which hosts its forecasts.) All of the data, code and the generated report are available to inspect on GitHub, and the statistical methodology is included with every forecast (scroll down to the Model section). The model itself is based on the Votamatic model by Drew Linzer, which was very successful at predicting the 2012 election. As of this writing on November 2, the model predicts a win by Hillary Clinton with a probability of 88%. (FiveThirtyEight's polls-only forecast gives her a 69.9% chance.)
One interesting chart included in the report is the state-by-state probabilities of winning. Nothing shows how divided this country is than how few states are actually competitive at all:
To check out the latest forecast from Kremp's model, follow the link below.
Slate: State and National Poll Aggregation
转自:http://blog.revolutionanalytics.com/2016/11/a-bayesian-election-forecast.html
A Bayesian election prediction, implemented with R and Stan的更多相关文章
- Bayesian CTR Prediction for Bing
Microsoft published a paper in ICML 2009 named ‘Web-Scale Bayesian Click-Through Rate Prediction for ...
- AI习惯的数学书籍、计算机经典书籍
http://download.csdn.net/download/wz619899442/8405297 https://www.amazon.com/Introduction-Automata-T ...
- An Introduction to Greta
I was surprised by greta. I had assumed that the tensorflow and reticulate packages would eventually ...
- BAYESIAN STATISTICS AND CLINICAL TRIAL CONCLUSIONS: WHY THE OPTIMSE STUDY SHOULD BE CONSIDERED POSITIVE(转)
Statistical approaches to randomised controlled trial analysis The statistical approach used in the ...
- 源码解读etcd heartbeat,election timeout之间的拉锯
转一个我在知乎上回答的有关raft election timeout/ heartbeat interval 的回答吧. 答:准确来讲: election是timeout,而heartbeat 是in ...
- How to Configure the Gradient Boosting Algorithm
How to Configure the Gradient Boosting Algorithm by Jason Brownlee on September 12, 2016 in XGBoost ...
- (转)A Beginner's Guide To Understanding Convolutional Neural Networks Part 2
Adit Deshpande CS Undergrad at UCLA ('19) Blog About A Beginner's Guide To Understanding Convolution ...
- AI:PR的数学表示-传统方法PR
前言: 接上一篇:AI:模式识别的数学表示 在图像处理PR领域,相对于ANN方法,其他的方法一般称为传统方法.在结构上,几乎所有的PR方法都是可解释的.且任一传统方法,在一定约束下,可以转换为SV近邻 ...
- 统计学习方法:罗杰斯特回归及Tensorflow入门
作者:桂. 时间:2017-04-21 21:11:23 链接:http://www.cnblogs.com/xingshansi/p/6743780.html 前言 看到最近大家都在用Tensor ...
随机推荐
- ConcurrentHashMap总结
线程不安全的HashMap 因为多线程环境下,使用HashMap进行put操作会引起死循环,导致CPU利用率接近100%,所以在并发情况下不能使用HashMap,如以下代码 final HashM ...
- React翻译官网文档之JSX
什么是JSX? 看下面的代码它被称为JSX,它既不是字符串也不是HTML,而是一种facebook公司对javascript语法的拓展.虽然写法很奇怪最终仍会会被编译为javascript代码 con ...
- JSON对象、JSON字符串的相互转换
JSON对象.JSON字符串的相互转换 json的格式: 第一种方式: 单一的json字符串,转换成json对象时,需要 eval('(' + json + ')');这样的格式,中间需要加括号 va ...
- 【Shell】使用Shell脚本发布项目
第一次写Shell脚本,没经验,是直接写呢,还是要走流程( ̄▽ ̄)~* ---------------------------------------------------------------- ...
- _getch() 函数,应用于输入密码敲入回车前修改
body,table { font-family: 微软雅黑; font-size: 10pt } table { border-collapse: collapse; border: solid g ...
- java设计模式--基础思想总结--父类引用操作对象
看设计模式的相关书籍也有一段时间了,一开始其实是抱着作为java三大框架的基础知识储备来学习的,不过到后来,才发现,在设计模式的一些准则装饰下,java的面向对象威力才真正地体现出来,后面的将会陆续地 ...
- Linux基础(6)
Linux基础(六) shell脚本中的三大循环和函数知识点 一.流程控制之if结构 1.简单的if实例: #!/bin/bash var='/etc/init.d' #var='/dev/sda' ...
- FrameBuffer系列 之 介绍
1. 来由 FrameBuffer是出现在2.2.xx内核当中的一种驱动程序接口.Linux工作在保护模式下,所以用户态进程是无法象 DOS 那样使用显卡 BIOS里提供的中断调用来实现直接写 ...
- JWebFileTrans(JDownload): 一款可以从网络上下载文件的小程序(二)
一 前言 本文是上一篇博客JWebFileTrans:一款可以从网络上下载文件的小程序(一)的续集.此篇博客主要在上一篇的基础上加入了断点续传的功能,用户在下载中途停止下载后,下次可以读取断点文件, ...
- SVM流行库LIBSvm的使用和调参
简介:Libsvm is a simple, easy-to-use, and efficient software for SVM classification and regression. It ...