If the media coverage is anything to go by, people are desperate to know who will win the US election on November 8. Polls give us some indication of what's likely to happen, but any single poll isn't a great guide (despite the hype that accompanies some of them). One poll is subject to any number of possible errors, statistical and otherwise: the sample, the methodology, the analysis, or even deliberate bias.

But put a whole bunch of polls together, and you can assemble a more realistic picture of the likely outcome, and the uncertainty associated with it. That's what poll aggregators likeFiveThirtyEight do: take state and national polls, etimate pollster biases and correlations between states, incorporate other influential variables (like economic data) and build a statistical model to forecast the number of electoral college seats won by each candidate (which in US elections, is pretty much the only thing that matters). FiveThirtyEight's methodology is a sound one, and has been largely successful at predicting elections, but the actual details of the process they use is secret, and is thus itself subject to accusations (unfounded, IMO) of bias.

A new election forecast by Pierre-Antoine Kremp, uses a similar (but Bayesian) process to predict the election, and all of the methodology is transparent and open. The forecast is implemented in the R programming language and Stan, the Bayesian computation engine. (The new model wasintroduced by Stan author Andrew Gelman on Slate, which hosts its forecasts.) All of the data, code and the generated report are available to inspect on GitHub, and the statistical methodology is included with every forecast (scroll down to the Model section). The model itself is based on the Votamatic model by Drew Linzer, which was very successful at predicting the 2012 election. As of this writing on November 2, the model predicts a win by Hillary Clinton with a probability of 88%. (FiveThirtyEight's polls-only forecast gives her a 69.9% chance.)

One interesting chart included in the report is the state-by-state probabilities of winning. Nothing shows how divided this country is than how few states are actually competitive at all:

To check out the latest forecast from Kremp's model, follow the link below.

Slate: State and National Poll Aggregation

转自:http://blog.revolutionanalytics.com/2016/11/a-bayesian-election-forecast.html

A Bayesian election prediction, implemented with R and Stan的更多相关文章

  1. Bayesian CTR Prediction for Bing

    Microsoft published a paper in ICML 2009 named ‘Web-Scale Bayesian Click-Through Rate Prediction for ...

  2. AI习惯的数学书籍、计算机经典书籍

    http://download.csdn.net/download/wz619899442/8405297 https://www.amazon.com/Introduction-Automata-T ...

  3. An Introduction to Greta

    I was surprised by greta. I had assumed that the tensorflow and reticulate packages would eventually ...

  4. BAYESIAN STATISTICS AND CLINICAL TRIAL CONCLUSIONS: WHY THE OPTIMSE STUDY SHOULD BE CONSIDERED POSITIVE(转)

    Statistical approaches to randomised controlled trial analysis The statistical approach used in the ...

  5. 源码解读etcd heartbeat,election timeout之间的拉锯

    转一个我在知乎上回答的有关raft election timeout/ heartbeat interval 的回答吧. 答:准确来讲: election是timeout,而heartbeat 是in ...

  6. How to Configure the Gradient Boosting Algorithm

    How to Configure the Gradient Boosting Algorithm by Jason Brownlee on September 12, 2016 in XGBoost ...

  7. (转)A Beginner's Guide To Understanding Convolutional Neural Networks Part 2

    Adit Deshpande CS Undergrad at UCLA ('19) Blog About A Beginner's Guide To Understanding Convolution ...

  8. AI:PR的数学表示-传统方法PR

    前言: 接上一篇:AI:模式识别的数学表示 在图像处理PR领域,相对于ANN方法,其他的方法一般称为传统方法.在结构上,几乎所有的PR方法都是可解释的.且任一传统方法,在一定约束下,可以转换为SV近邻 ...

  9. 统计学习方法:罗杰斯特回归及Tensorflow入门

    作者:桂. 时间:2017-04-21  21:11:23 链接:http://www.cnblogs.com/xingshansi/p/6743780.html 前言 看到最近大家都在用Tensor ...

随机推荐

  1. Android使用本地广播

    Android本地广播学习中一直被忽略,今天用到了,Mark一下 1.本地广播的定义和普通广播一样 例如 public class WakeTimesBroadcastReceiver extends ...

  2. NOIP2015游记——一次开心又失望的旅行

    啊,一年一度的NOIP终于是结束了 以前的大神都有写自己的感受 然而我居然给忘了!!!! 吓得我赶紧来写一份游记 Day.-INF--出发前一个星期 机智的我选择了停课 就是为了OIER这伟大而又光荣 ...

  3. 仿QQ空间和微信朋友圈,高解耦高复用高灵活

    先看看效果: 用极少的代码实现了 动态详情 及 二级评论 的 数据获取与处理 和 UI显示与交互,并且高解耦.高复用.高灵活. 动态列表界面MomentListFragment支持 下拉刷新与上拉加载 ...

  4. DirectFB、Layer、Window、Surface之间关系

    层(Layers) 表示一块儿独立的图像缓冲区.大多数的嵌入式设备都有多个层.他们由硬件使用合适的alpha值来blending,然后显示. 表面 (Surface) 用来保存像素数据的保留内存区域. ...

  5. PHP的虚拟域名的配置

    由于本人的自己搭建的php环境,Wamp环境.虚拟域名是写程序的一个最基本的配置,也对项目的调试有一定的真实感.我在学习虚拟域名的时候是受到了一些的问题,所以说写这个是为了帮助新人少走弯路, 也是为了 ...

  6. MySQL用户管理和权限设置

    用户管理 mysql>use mysql; 查看 mysql> select host,user,password from user ; 创建 mysql> create user ...

  7. CSS完美实现iframe高度自适应(支持跨域)

    Iframe的强大功能偶就不多说了,它不但被开发人员经常运用,而且黑客们也常常使用它,总之用过的人知道它的强大之处,但是Iframe有个致命的"BUG"就是iframe的高度无法自 ...

  8. 服务器端IIS中部署带Office组件程序

    开发的程序需要用到Office组件(Word.Excel等)的时候,往往在开发环境中运行正常,但是部署到服务器上就出问题. 1)首先保证开发环境引用的dll正确 .net 4.0以上版本,添加引用Mi ...

  9. javascript函数作用域及this指向详解

    一.先说一个简单的概念--变量提升: 通过function+函数名的方式,声明的函数,可以在代码中的任何位置调用: 通过var定义变量的方式,声明的函数,则必须在声明之后进行调用,原因就是在变量定义之 ...

  10. C#集合之有序列表

    如果需要基于键对所需集合排序,就可以使用SortedList<TKey,TValue>类.这个类按照键给元素排序.这个集合中的值和键都可以使用任何类型.定义为键的自定义类型需要实现ICom ...