题目描述

      FJ打算好好修一下农场中某条凹凸不平的土路。按奶牛们的要求,修好后的路面高度应当单调上升或单调下降,也就是说,高度上升与高度下降的路段不能同时出现在修好的路中。 整条路被分成了N段,N个整数A_1, ... , A_N (1 <= N <= 2,000)依次描述了每一段路的高度(0 <= A_i <= 1,000,000,000)。FJ希望找到一个恰好含N个元素的不上升或不下降序列B_1, ... , B_N,作为修过的路中每个路段的高度。由于将每一段路垫高或挖低一个单位的花费相同,修路的总支出可以表示为: |A_1 - B_1| + |A_2 - B_2| + ... + |A_N - B_N| 请你计算一下,FJ在这项工程上的最小支出是多少。FJ向你保证,这个支出不会超过2^31-1。
 

输入

 第1行: 输入1个整数:N * 第2..N+1行: 第i+1行为1个整数:A_i
 

输出

 第1行: 输出1个正整数,表示FJ把路修成高度不上升或高度不下降的最小花费
 

样例输入

7
1
3
2
4
5
3
9

样例输出

3

提示

FJ将第一个高度为3的路段的高度减少为2,将第二个高度为3的路段的高度增加到5,总花费为|2-3|+|5-3| = 3,并且各路段的高度为一个不下降序列 1,2,2,4,5,5,9。

题解 

考试的时候看到最小费用,想跑一跑网络流试试。折腾了半天没建出来图,也想不到什么数据结构。dp呢,状态显然需要二维来表示,第二维要开到5*10^8?不可想象。于是乎到最后连个暴力做法都没想出来,直接不顾一切地从头到尾补齐,因为数据过水居然水了40分= =。
       正解是离散之后跑二维dp。在我的概念里离散只能用于只和值的大小关系而不和值本身有关的题,没想到还有这种用法。离散后的大小序号用于表示dp的第二维,这样数组只用开到2000*2000,而求值则用第二维序号对应的准确值和原高度作差。虽然经过了离散化,原值并没有被放弃,这样的思路十分新奇。f[i][j]表示第i位高度为第j大需要的最小费用,
状态转移方程为f[i][j]=min{f[i-1][k]}+abs(g[j]-a[i]) 1<=k<=J(非下降),g[i]表示经过去重后第i大的原高度。这里的min{f[i-1][k]}只要用一个变量来维护,初值为f[i-1][1],在转移的过程中同时进行比较即可。非上升则只是从后向前转移,min初始值为f[i+1][1]。

#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<cmath>
using namespace std;
const int sj=;
int n,h[sj],l[sj],temp,mi,f[sj][sj],jg;
struct W
{
int hi,num,xu;
}w[sj];
int comp(const W&a,const W&b)
{
return a.hi<b.hi;
}
void init()
{
scanf("%d",&n);
for(int i=;i<=n;i++)
{
scanf("%d",&h[i]);
w[i].hi=h[i];
w[i].num=i;
}
sort(w+,w+n+,comp);
w[].xu=;
l[w[].xu]=w[].hi;
temp=;
for(int i=;i<=n;i++)
{
if(w[i].hi>w[i-].hi) temp++;
w[i].xu=temp;
l[w[i].xu]=w[i].hi;
}
}
int bj(int x,int y)
{
return x<y?x:y;
}
int main()
{
init();
for(int i=;i<=n;i++)
{
mi=f[i-][];
for(int j=;j<=temp;j++)
{
mi=bj(f[i-][j],mi);
f[i][j]=mi+abs(l[j]-h[i]);
}
}
jg=0x7fffffff;
for(int j=;j<=temp;j++)
jg=bj(f[n][j],jg);
memset(f,,sizeof(f));
for(int i=n;i>=;i--)
{
mi=f[i+][];
for(int j=;j<=temp;j++)
{
mi=bj(f[i+][j],mi);
f[i][j]=mi+abs(l[j]-h[i]);
}
}
for(int j=;j<=temp;j++)
jg=bj(f[][j],jg);
printf("%d",jg);
return ;
}

grading

Making the Grade (bzoj1592)的更多相关文章

  1. Making the Grade (bzoj1592)题解

    问题 A: Making the Grade (bzoj1592) 时间限制: 1 Sec  内存限制: 128 MB 题目描述       FJ打算好好修一下农场中某条凹凸不平的土路.按奶牛们的要求 ...

  2. [bzoj1592] Making the Grade

    [bzoj1592] Making the Grade 题目 FJ打算好好修一下农场中某条凹凸不平的土路.按奶牛们的要求,修好后的路面高度应当单调上升或单调下降,也就是说,高度上升与高度下降的路段不能 ...

  3. [bzoj1592][Usaco09Feb]Making the Grade 路面修整_动态规划

    Making the Grade 路面修整 bzoj-1592 题目大意:给你n段路,每段路有一个高度h[i],将h[i]修改成h[i]$\pm\delta$的代价为$\delta$,求将这n段路修成 ...

  4. BZOJ1592 POJ3666 [Usaco2008 Feb]Making the Grade 路面修整 左偏树 可并堆

    欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目传送门 - POJ3666 题目传送门 - BZOJ1592 题意概括 整条路被分成了N段,N个整数A_1, ... , ...

  5. 【贪心】bzoj1592: [Usaco2008 Feb]Making the Grade 路面修整

    贪心的经典套路:替换思想:有点抽象 Description FJ打算好好修一下农场中某条凹凸不平的土路.按奶牛们的要求,修好后的路面高度应当单调上升或单调下降,也 就是说,高度上升与高度下降的路段不能 ...

  6. 2014.6.14模拟赛【bzoj1592】[Usaco2008 Feb]Making the Grade 路面修整

    Description FJ打算好好修一下农场中某条凹凸不平的土路.按奶牛们的要求,修好后的路面高度应当单调上升或单调下降,也就是说,高度上升与高度下降的路段不能同时出现在修好的路中. 整条路被分成了 ...

  7. 【bzoj1592】[Usaco2008 Feb]Making the Grade 路面修整

    FJ打算好好修一下农场中某条凹凸不平的土路.按奶牛们的要求,修好后的路面高度应当单调上升或单调下降,也就是说,高度上升与高度下降的路段不能同时出现在修好的路中. 整条路被分成了N段,N个整数A_1, ...

  8. [BZOJ1592] [Usaco2008 Feb]Making the Grade 路面修整(DP)

    传送门 有个结论,每一个位置修改高度后的数,一定是原来在这个数列中出现过的数 因为最终结果要么不递增要么不递减, 不递增的话, 如果x1 >= x2那么不用动,如果x1 < x2,把x1变 ...

  9. BZOJ1592: [Usaco2008 Feb]Making the Grade 路面修整

    n<=2000个数,把它修改成不上升或不下降序列所要改变的数值总共最小是多少yy一下可得最后改成的数值肯定是原数组数值中的某一个感觉一下,相邻两个数如果有冲突要改,那肯定把他们改成两者之一的数才 ...

随机推荐

  1. PHPCMS v9点击量增加值加大的方法

    PHPCMS v9点击量增加值加大的方法 在根目录/api 50行 $views = $r['views'] + 1; 修改数字1即可修改每次刷新页面点击量增加的数值.

  2. ECSHOP购物车页面显示商品简单描述

    1.这里说的商品简单描述,不是商品的详细信息,而是后台编辑商品时在“其他信息”标签栏填写的那个“商品简单描述”,即goods_brief字段 2.修改lib_order.php文件的get_cart_ ...

  3. 实现Ant Design 自定义表单组件

    Ant Design 组件提供了Input,InputNumber,Radio,Select,uplod等表单组件,但实际开发中这是不能满足需求,同时我们希望可以继续使用Form提供的验证和提示等方法 ...

  4. Java代码实现 增删查 + 分页——实习第四天

    今天项目内容已经开始了,并且已经完成好多基本操作,今天就开始总结今天学习到的内容,和我遇到的问题,以及分析这其中的原因. 内容模块: 1:Java代码实现对数据库的增删查: 2:分页且获取页面信息: ...

  5. [平衡树] mingap

    时间限制: 1 Sec  内存限制: 128 MB提交: 18  解决: 9 题目描述 实现一种数据结构,维护以下两个操作: (1) I x :加入元素 x : (2) M :输出当前表中相差最小的两 ...

  6. 详解ES6中的 let 和const

      前  言 JRedu ECMAScript 6 是 JavaScript 语言教程,全面介绍 ECMAScript 6 新引入的语法特性. ES6 与上一个版本 ES5 的所有不同之处,对涉及的语 ...

  7. MVC过滤器之添加LoginAttribute,浏览器bug:重定向次数太多

    以前在写登录Action过滤时,都在每个Controller前写上CheckLoginAttribute:这次决定偷懒试一下能否将所有Action和Controller统一过滤: 出bug的代码是这样 ...

  8. JavaScript 创建一个 form 表单并提交

    <!DOCTYPE HTML> <html lang="en-US"> <head> <meta charset="UTF-8& ...

  9. php中memcache的运用

    <?php /** * •Memcache::add — 增加一个条目到缓存服务器 * •Memcache::addServer — 向连接池中添加一个memcache服务器 * •Memcac ...

  10. js脚本中try与cache捕获异常处理

    <script type="text/javascript"> function add_reason(elm){ try{ var pp=$('.pp').val() ...