在数据流应用的现实场景中常常会遇到与外界系统对接的需求。这些外部系统可能是Actor系统又或者是一些其它类型的系统。与这些外界系统对接的意思是在另一个线程中运行的数据流可以接收外部系统推送的事件及做出行为改变的响应。

如果一个外界系统需要控制一个运行中数据流的功能环节GraphStage,首先必须在这个GraphStage内部构建一个控制函数,这样才能接触并更改GraphStage的内部状态。外部系统可以通过调用这个控制函数来向GraphStage发送信息,控制GraphStage行为。akka-stream是多线程异步模式的程序,所以这个函数只能是一个异步运行的回调callback。akka-stream提供了一个函数getAsyncCallback函数,能够把一个函数放到另一个线程里并返回它的callback:

  /**
* Obtain a callback object that can be used asynchronously to re-enter the
* current [[GraphStage]] with an asynchronous notification. The [[invoke()]] method of the returned
* [[AsyncCallback]] is safe to be called from other threads and it will in the background thread-safely
* delegate to the passed callback function. I.e. [[invoke()]] will be called by the external world and
* the passed handler will be invoked eventually in a thread-safe way by the execution environment.
*
* This object can be cached and reused within the same [[GraphStageLogic]].
*/
final def getAsyncCallback[T](handler: T ⇒ Unit): AsyncCallback[T] = {
new AsyncCallback[T] {
override def invoke(event: T): Unit =
interpreter.onAsyncInput(GraphStageLogic.this, event, handler.asInstanceOf[Any ⇒ Unit])
}
}

getAsyncCallback把一个函数T=>Unit变成了异步运算函数并通过AsyncCallback返回它的回调callback。下面是getAsyncCallback的一个用例:

//external system
object Injector {
var callback: AsyncCallback[String] = null
def inject(m: String) = {
if (callback != null)
callback.invoke(m)
}
}
class InjectControl(injector: Injector.type) extends GraphStage[FlowShape[String,String]] {
val inport = Inlet[String]("input")
val outport = Outlet[String]("output")
val shape = FlowShape.of(inport,outport) override def createLogic(inheritedAttributes: Attributes): GraphStageLogic =
new GraphStageLogic(shape) {
var extMessage = ""
override def preStart(): Unit = {
val callback = getAsyncCallback[String] { m =>
if (m.length > )
m match {
case "Stop" => completeStage()
case s: String => extMessage = s
} }
injector.callback = callback
} setHandler(inport, new InHandler {
override def onPush(): Unit =
if (extMessage.length > ) {
push(outport,extMessage)
extMessage=""
}
else
push(outport, grab(inport))
})
setHandler(outport, new OutHandler {
override def onPull(): Unit = pull(inport)
})
} }

上面这个例子里的object Injector模拟一个外部系统。我们重写了GraphStage InjectControl.createLogic里的preStart()函数,在这里把一个String=>Unit函数的callback登记在Injector里。这个callback函数能接受传入的String并更新内部状态extMessage,或者当传入String==“Stop"时终止数据流。在onPush()里extMessage最终会被当作流元素插入到数据流中。下面我们就构建这个GraphStage的测试运行程序:

object InteractWithStreams extends App {
implicit val sys = ActorSystem("demoSys")
implicit val ec = sys.dispatcher
implicit val mat = ActorMaterializer(
ActorMaterializerSettings(sys)
.withInputBuffer(initialSize = , maxSize = )
) val source = Source(Stream.from()).map(_.toString).delay(.second,DelayOverflowStrategy.backpressure)
val graph = new InjectControl(Injector)
val flow = Flow.fromGraph(graph) source.via(flow).to(Sink.foreach(println)).run()
Thread.sleep()
Injector.inject("hello")
Thread.sleep()
Injector.inject("world!")
Thread.sleep()
Injector.inject("Stop") scala.io.StdIn.readLine()
sys.terminate() }

试运行结果显示:


hello

world!

Process finished with exit code 

正确地把"hello world!"插入了一个正在运行中的数据流中并在最后终止了这个数据流。

另外,一个GraphStage也可以被外界当作一种Actor来进行交流。我们可以在GraphStage内部构建一个(ActorRef,Any)=>Unit款式的函数,然后用getStageActor(func).ref以一种ActorRef形式返回这个函数:

 /**
* Initialize a [[StageActorRef]] which can be used to interact with from the outside world "as-if" an [[Actor]].
* The messages are looped through the [[getAsyncCallback]] mechanism of [[GraphStage]] so they are safe to modify
* internal state of this stage.
*
* This method must (the earliest) be called after the [[GraphStageLogic]] constructor has finished running,
* for example from the [[preStart]] callback the graph stage logic provides.
*
* Created [[StageActorRef]] to get messages and watch other actors in synchronous way.
*
* The [[StageActorRef]]'s lifecycle is bound to the Stage, in other words when the Stage is finished,
* the Actor will be terminated as well. The entity backing the [[StageActorRef]] is not a real Actor,
* but the [[GraphStageLogic]] itself, therefore it does not react to [[PoisonPill]].
*
* @param receive callback that will be called upon receiving of a message by this special Actor
* @return minimal actor with watch method
*/
// FIXME: I don't like the Pair allocation :(
@ApiMayChange
final protected def getStageActor(receive: ((ActorRef, Any)) ⇒ Unit): StageActor = {
_stageActor match {
case null ⇒
val actorMaterializer = ActorMaterializerHelper.downcast(interpreter.materializer)
_stageActor = new StageActor(actorMaterializer, getAsyncCallback, receive)
_stageActor
case existing ⇒
existing.become(receive)
existing
}
}
...
/**
* The ActorRef by which this StageActor can be contacted from the outside.
* This is a full-fledged ActorRef that supports watching and being watched
* as well as location transparent (remote) communication.
*/
def ref: ActorRef = functionRef

下面是receive:((ActorRef,Any))=>Unit这个函数的实现例子:

      def behavior(m:(ActorRef,Any)): Unit = {
val (sender, msg) = m msg.asInstanceOf[String] match {
case "Stop" => completeStage()
case s@ _ => extMessage = s
}
}

这个函数的输入参数(sender,msg)代表发送消息的Actor和发送的消息。与上个例子一样,作为一个GraphStage的内部函数,它可以使用、更新GraphStage内部状态。GraphStage的实现如下:

class StageAsActor(extActor: ActorRef) extends GraphStage[FlowShape[String,String]] {
val inport = Inlet[String]("input")
val outport = Outlet[String]("output")
val shape = FlowShape.of(inport,outport) override def createLogic(inheritedAttributes: Attributes): GraphStageLogic =
new GraphStageLogic(shape) {
var extMessage = ""
override def preStart(): Unit = {
extActor ! getStageActor(behavior).ref
} def behavior(m:(ActorRef,Any)): Unit = {
val (sender, msg) = m msg.asInstanceOf[String] match {
case "Stop" => completeStage()
case s@ _ => extMessage = s
}
} setHandler(inport, new InHandler {
override def onPush(): Unit =
if (extMessage.length > ) {
push(outport,extMessage)
extMessage=""
}
else
push(outport, grab(inport))
})
setHandler(outport, new OutHandler {
override def onPull(): Unit = pull(inport)
})
} }

参数extActor就是外部的控制Actor。在creatLogic.preStart()里我们先把StageActor传给extActor。外部系统就可以通过extActor来控制数据流行为:

class Messenger extends Actor with ActorLogging {
var stageActor: ActorRef = _
override def receive: Receive = {
case r: ActorRef =>
stageActor = r
log.info("received stage actorRef")
case s: String => stageActor forward s
log.info(s"forwarding message:$s") }
}
object GetStageActorDemo extends App {
implicit val sys = ActorSystem("demoSys")
implicit val ec = sys.dispatcher
implicit val mat = ActorMaterializer(
ActorMaterializerSettings(sys)
.withInputBuffer(initialSize = , maxSize = )
) val stageActorMessenger = sys.actorOf(Props[Messenger],"forwarder") val source = Source(Stream.from()).map(_.toString).delay(.second,DelayOverflowStrategy.backpressure)
val graph = new StageAsActor(stageActorMessenger)
val flow = Flow.fromGraph(graph) source.via(flow).to(Sink.foreach(println)).run() Thread.sleep()
stageActorMessenger ! "Hello"
Thread.sleep()
stageActorMessenger ! "World!"
Thread.sleep()
stageActorMessenger ! "Stop" scala.io.StdIn.readLine()
sys.terminate() }

Messenger就是一个存粹的中介,把控制消息通过StageActor转发给运行中的数据流。

下面是本次示范的源代码:

GetAsyncCallBack.scala

import akka.actor._
import akka.stream._
import akka.stream.scaladsl._
import akka.stream.stage._
import scala.concurrent.duration._ //external system
object Injector {
var callback: AsyncCallback[String] = null
def inject(m: String) = {
if (callback != null)
callback.invoke(m)
}
}
class InjectControl(injector: Injector.type) extends GraphStage[FlowShape[String,String]] {
val inport = Inlet[String]("input")
val outport = Outlet[String]("output")
val shape = FlowShape.of(inport,outport) override def createLogic(inheritedAttributes: Attributes): GraphStageLogic =
new GraphStageLogic(shape) {
var extMessage = ""
override def preStart(): Unit = {
val callback = getAsyncCallback[String] { m =>
if (m.length > )
m match {
case "Stop" => completeStage()
case s: String => extMessage = s
} }
injector.callback = callback
} setHandler(inport, new InHandler {
override def onPush(): Unit =
if (extMessage.length > ) {
push(outport,extMessage)
extMessage=""
}
else
push(outport, grab(inport))
})
setHandler(outport, new OutHandler {
override def onPull(): Unit = pull(inport)
})
} } object GetAsyncCallbackDemo extends App {
implicit val sys = ActorSystem("demoSys")
implicit val ec = sys.dispatcher
implicit val mat = ActorMaterializer(
ActorMaterializerSettings(sys)
.withInputBuffer(initialSize = , maxSize = )
) val source = Source(Stream.from()).map(_.toString).delay(.second,DelayOverflowStrategy.backpressure)
val graph = new InjectControl(Injector)
val flow = Flow.fromGraph(graph) source.via(flow).to(Sink.foreach(println)).run()
Thread.sleep()
Injector.inject("hello")
Thread.sleep()
Injector.inject("world!")
Thread.sleep()
Injector.inject("Stop") scala.io.StdIn.readLine()
sys.terminate() }

GetStageActorDemo.scala

import akka.actor._
import akka.stream._
import akka.stream.scaladsl._
import akka.stream.stage._
import scala.concurrent.duration._ class StageAsActor(extActor: ActorRef) extends GraphStage[FlowShape[String,String]] {
val inport = Inlet[String]("input")
val outport = Outlet[String]("output")
val shape = FlowShape.of(inport,outport) override def createLogic(inheritedAttributes: Attributes): GraphStageLogic =
new GraphStageLogic(shape) {
var extMessage = ""
override def preStart(): Unit = {
extActor ! getStageActor(behavior).ref
} def behavior(m:(ActorRef,Any)): Unit = {
val (sender, msg) = m msg.asInstanceOf[String] match {
case "Stop" => completeStage()
case s@ _ => extMessage = s
}
} setHandler(inport, new InHandler {
override def onPush(): Unit =
if (extMessage.length > ) {
push(outport,extMessage)
extMessage=""
}
else
push(outport, grab(inport))
})
setHandler(outport, new OutHandler {
override def onPull(): Unit = pull(inport)
})
} } class Messenger extends Actor with ActorLogging {
var stageActor: ActorRef = _
override def receive: Receive = {
case r: ActorRef =>
stageActor = r
log.info("received stage actorRef")
case s: String => stageActor forward s
log.info(s"forwarding message:$s") }
}
object GetStageActorDemo extends App {
implicit val sys = ActorSystem("demoSys")
implicit val ec = sys.dispatcher
implicit val mat = ActorMaterializer(
ActorMaterializerSettings(sys)
.withInputBuffer(initialSize = , maxSize = )
) val stageActorMessenger = sys.actorOf(Props[Messenger],"forwarder") val source = Source(Stream.from()).map(_.toString).delay(.second,DelayOverflowStrategy.backpressure)
val graph = new StageAsActor(stageActorMessenger)
val flow = Flow.fromGraph(graph) source.via(flow).to(Sink.foreach(println)).run() Thread.sleep()
stageActorMessenger ! "Hello"
Thread.sleep()
stageActorMessenger ! "World!"
Thread.sleep()
stageActorMessenger ! "Stop" scala.io.StdIn.readLine()
sys.terminate() }

Akka(24): Stream:从外部系统控制数据流-control live stream from external system的更多相关文章

  1. 泛函编程(13)-无穷数据流-Infinite Stream

    上节我们提到Stream和List的主要分别是在于Stream的“延后计算“(lazy evaluation)特性.我们还讨论过在处理大规模排列数据集时,Stream可以一个一个把数据元素搬进内存并且 ...

  2. java8 Stream的实现原理 (从零开始实现一个stream流)

    1.Stream 流的介绍 1.1 java8 stream介绍 java8新增了stream流的特性,能够让用户以函数式的方式.更为简单的操纵集合等数据结构,并实现了用户无感知的并行计算. 1.2  ...

  3. Access control differentiation in trusted computer system

    A trusted computer system that offers Linux® compatibility and supports contemporary hardware speeds ...

  4. Stream流中的常用方法foeEach和Stream流中的常用方法filter

    延迟方法:返回值类型仍然是Stream接口自身类型的方法,因此支持链式调用.(除了中介方法外,其余方法均为延迟方法) 终结方法:返回值类型不再是Stream接口自身类型的方法,因此不再支持类似Stri ...

  5. FunDA(4)- 数据流内容控制:Stream data element control

    上节我们探讨了通过scalaz-stream-fs2来驱动一套数据处理流程,用fs2的Pipe类型来实现对数据流的逐行操作.本篇讨论准备在上节讨论的基础上对数据流的流动和元素操作进行优化完善.如数据流 ...

  6. 数据流中位数 · data stream median

    [抄题]: 数字是不断进入数组的,在每次添加一个新的数进入数组的同时返回当前新数组的中位数. [思维问题]: [一句话思路]: 左边x个元素,右边要有x+1个元素,因此利用maxheap把左边的最大值 ...

  7. Power control within a coherent multi-processing system

    Within a multi-processing system including a plurality of processor cores 4, 6operating in accordanc ...

  8. php执行外部命令函数:exec()、passthru()、system()、shell_exec()对比

    PHP提供了4种方法执行系统外部命令:exec().passthru().system().shell_exec(),下面分别介绍: 1.exec 原型:string exec ( string $c ...

  9. openstack搭建之-创建实例(13)

    一. 创建flat网络的实例 #运行admin环境变量,创建网络类型为flat . admin-openrc openstack network create --share \ --provider ...

随机推荐

  1. Datatables快速入门开发--一款好用的JQuery表格插件

    博主是一个java后端程序员小白,前端技术会用但不精通,做后台的一些功能经常要涉及表格的展示,分页,搜索,排序等等一系列功能,在经历了一段时间的原始手段,开始接触并使用Datatables,一个jqu ...

  2. Java之线程,常用方法,线程同步,死锁

    1, 线程的概念 进程与线程 进程:每个进程都有独立的代码和数据空间(进程上下文),进程间的切换会有较大的开销,一个进程包含1--n个线程.(进程是资源分配的最小单位) 线程:同一类线程共享代码和数据 ...

  3. 设计模式的征途—18.策略(Strategy)模式

    俗话说条条大路通罗马,很多情况下实现某个目标地途径都不只一条.在软件开发中,也会时常遇到这样的情况,实现某一个功能有多条途径,每一条途径都对应一种算法.此时,可以使用一种设计模式来实现灵活地选择解决途 ...

  4. js prototype 继承

    //继承 function inherits(ctor,superCtor){ ctor.super_ = superCtor; ctor.prototype = Object.create(supe ...

  5. zzuli--2134: 维克兹的进制转换(规律)

    2134: 维克兹的进制转换 Time Limit: 1 Sec  Memory Limit: 128 MBSubmit: 287  Solved: 63SubmitStatusWeb Board D ...

  6. opencv 小程序170323

    1.滤波 GaussianBlur(imgThresholded, imgThresholded, Size(5, 5), 0, 0);//高斯滤波 medianBlur(imgThresholded ...

  7. 安徽省2016“京胜杯”程序设计大赛_C_箭无虚发

    箭无虚发 Time Limit: 1000 MS Memory Limit: 65536 KB Total Submissions: 128 Accepted: 21 Description      ...

  8. 一步一步学MySQL-一致性非锁定读和锁定读

    一致性非锁定读(consistent nonlocking read) 一致性非锁定读是值InnoDB存储引擎通过多版本控制(multi versioning)的方式来读取当前执行时间数据库中的数据. ...

  9. python学习===复制list

    """将一个列表的数据复制到另一个列表中.""" """ 使用[:] """ a ...

  10. 理解LGWR,Log File Sync Waits以及Commit的性能问题[转]

    理解LGWR,Log File Sync Waits以及Commit的性能问题 一.概要: 1.  Commit和log filesync的工作机制 2.  为什么log file wait太久 3. ...