如果您有n+1树,文章n+1埋不足一棵树m种子,法国隔C【n+m】【m】

大量的组合,以取mod使用Lucas定理:

Lucas(n,m,p) = C[n%p][m%p] × Lucas(n/p,m/p,p) ;

Saving Beans

Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)

Total Submission(s): 2314    Accepted Submission(s): 845

Problem Description
Although winter is far away, squirrels have to work day and night to save beans. They need plenty of food to get through those long cold days. After some time the squirrel family thinks that they have to solve a problem. They suppose that they will save beans
in n different trees. However, since the food is not sufficient nowadays, they will get no more than m beans. They want to know that how many ways there are to save no more than m beans (they are the same) in n trees.



Now they turn to you for help, you should give them the answer. The result may be extremely huge; you should output the result modulo p, because squirrels can’t recognize large numbers.
 
Input
The first line contains one integer T, means the number of cases.



Then followed T lines, each line contains three integers n, m, p, means that squirrels will save no more than m same beans in n different trees, 1 <= n, m <= 1000000000, 1 < p < 100000 and p is guaranteed to be a prime.
 
Output
You should output the answer modulo p.
 
Sample Input
2
1 2 5
2 1 5
 
Sample Output
3
3
Hint
Hint For sample 1, squirrels will put no more than 2 beans in one tree. Since trees are different, we can label them as 1, 2 … and so on.
The 3 ways are: put no beans, put 1 bean in tree 1 and put 2 beans in tree 1. For sample 2, the 3 ways are:
put no beans, put 1 bean in tree 1 and put 1 bean in tree 2.
 
Source
 

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm> using namespace std; typedef long long int LL; LL n,m,p; LL fact[100100]; LL QuickPow(LL x,LL t,LL m)
{
if(t==0) return 1LL;
LL e=x,ret=1LL;
while(t)
{
if(t&1) ret=(ret*e)%m;
e=(e*e)%m;
t>>=1LL;
}
return ret%m;
} void get_fact(LL p)
{
fact[0]=1LL;
for(int i=1;i<=p+10;i++)
fact[i]=(fact[i-1]*i)%p;
} LL Lucas(LL n,LL m,LL p)
{
///lucas(n,m,p)=c[n%p][m%p]*lucas(n/p,m/p,p);
LL ret=1LL;
while(n&&m)
{
LL a=n%p,b=m%p;
if(a<b) return 0;
ret=(ret*fact[a]*QuickPow((fact[b]*fact[a-b])%p,p-2,p))%p;
n/=p; m/=p;
}
return ret%p;
} int main()
{
int T_T;
scanf("%d",&T_T);
while(T_T--)
{
LL n,m,p;
cin>>n>>m>>p;
get_fact(p);
cout<<Lucas(n+m,m,p)<<endl;
}
return 0;
}

版权声明:本文博客原创文章。博客,未经同意,不得转载。

HDOJ 3037 Saving Beans的更多相关文章

  1. hdu 3037 Saving Beans(组合数学)

    hdu 3037 Saving Beans 题目大意:n个数,和不大于m的情况,结果模掉p,p保证为素数. 解题思路:隔板法,C(nn+m)多选的一块保证了n个数的和小于等于m.可是n,m非常大,所以 ...

  2. hdu 3037 Saving Beans Lucas定理

    Saving Beans Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Tota ...

  3. hdu 3037 Saving Beans

    Saving Beans Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Tota ...

  4. hdu 3037——Saving Beans

    Saving Beans Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Tota ...

  5. poj—— 3037 Saving Beans

    Saving Beans Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Tot ...

  6. Hdu 3037 Saving Beans(Lucus定理+乘法逆元)

    Saving Beans Time Limit: 3000 MS Memory Limit: 32768 K Problem Description Although winter is far aw ...

  7. HDU 3037 Saving Beans(Lucas定理模板题)

    Problem Description Although winter is far away, squirrels have to work day and night to save beans. ...

  8. HDU 3037 Saving Beans (Lucas法则)

    主题链接:pid=3037">http://acm.hdu.edu.cn/showproblem.php?pid=3037 推出公式为C(n + m, m) % p. 用Lucas定理 ...

  9. HDU 3037 Saving Beans(Lucas定理的直接应用)

    解题思路: 直接求C(n+m , m) % p , 由于n , m ,p都非常大,所以要用Lucas定理来解决大组合数取模的问题. #include <string.h> #include ...

随机推荐

  1. Xcode 5.1.1 与 Xcode 6.0.1 共存

    Xcode 5.1.1 (下面简称Xcode5)和Xcode 6.0.1(下面简称Xcode6)都是正式版本号.其应用程序文件名称都是"Xcode".假设通过AppStore升级或 ...

  2. php zip文件内容比較类

    php zip 文件比較类,比較两个zip文件的内容,返回新增,删除,及同样的文件列表.临时仅仅支持单层. 需求:上传一个zip文件,zip内有非常多图片文件.须要对图片文件进行一系列非常耗时的处理. ...

  3. 模板引擎mustache.js

    Javascript模板引擎mustache.js详解   阅读目录 1. 从一个简单真实的需求讲起 2. mustache的用法 3. mustache的思想 4. {{prop}}标签 5. {{ ...

  4. c# 获取某个对象的[公有属性]的名称,类型,值

    /// <summary> /// 获取某个对象的[公有属性]的名称,类型,值 /// </summary> /// <typeparam name="T&qu ...

  5. 安装gcc 3.4

    安装   gcc 3.4 f**k,不是为了编译0.11内核.我才懒得鸟3.4的版本号 源代码编译被我实践--"不归路",各种报错,我起码不止是了4个版本号的gcc,各种不兼容.各 ...

  6. web.xmlf多ilter在执行顺序

    1.随着url-pattern路配置filter请务必先实施servlet-name路配置filter    2.随着url-partern路配置filter于.,按web.xml于filter-ma ...

  7. eclipse git 一个错误:the current branch is not configured for pull No value for key branch.xxx.merge found

    eclipse git 一个错误:the current branch is not configured for pull No value for key branch.xxx.merge fou ...

  8. ZOJ Problem Set - 2563 Long Dominoes 【如压力dp】

    称号:ZOJ Problem Set - 2563 Long Dominoes 题意:给出1*3的小矩形.求覆盖m*n的矩阵的最多的不同的方法数? 分析:有一道题目是1 * 2的.比較火.链接:这里 ...

  9. 构建安全的Xml Web Service系列之wse之证书存储位置

    原文:构建安全的Xml Web Service系列之wse之证书存储位置 我们在前几天对xml web service的安全性提出了一些建议,大家可以通过以下地址访问: 构建安全的Xml Web Se ...

  10. HDU 1061 Rightmost Digit解决问题的方法

    求大量N^N的值最右边的数字,即最低位. 它将能够解决一个简单二分法. 只是要注意溢出,只要把N % 10之后.我不会溢出,代替使用的long long. #include <stdio.h&g ...