HDOJ 3037 Saving Beans
如果您有n+1树,文章n+1埋不足一棵树m种子,法国隔C【n+m】【m】
大量的组合,以取mod使用Lucas定理:
Lucas(n,m,p) = C[n%p][m%p] × Lucas(n/p,m/p,p) ;
Saving Beans
Time Limit: 6000/3000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 2314 Accepted Submission(s): 845
in n different trees. However, since the food is not sufficient nowadays, they will get no more than m beans. They want to know that how many ways there are to save no more than m beans (they are the same) in n trees.
Now they turn to you for help, you should give them the answer. The result may be extremely huge; you should output the result modulo p, because squirrels can’t recognize large numbers.
Then followed T lines, each line contains three integers n, m, p, means that squirrels will save no more than m same beans in n different trees, 1 <= n, m <= 1000000000, 1 < p < 100000 and p is guaranteed to be a prime.
2
1 2 5
2 1 5
3
3HintHint For sample 1, squirrels will put no more than 2 beans in one tree. Since trees are different, we can label them as 1, 2 … and so on.
The 3 ways are: put no beans, put 1 bean in tree 1 and put 2 beans in tree 1. For sample 2, the 3 ways are:
put no beans, put 1 bean in tree 1 and put 1 bean in tree 2.
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm> using namespace std; typedef long long int LL; LL n,m,p; LL fact[100100]; LL QuickPow(LL x,LL t,LL m)
{
if(t==0) return 1LL;
LL e=x,ret=1LL;
while(t)
{
if(t&1) ret=(ret*e)%m;
e=(e*e)%m;
t>>=1LL;
}
return ret%m;
} void get_fact(LL p)
{
fact[0]=1LL;
for(int i=1;i<=p+10;i++)
fact[i]=(fact[i-1]*i)%p;
} LL Lucas(LL n,LL m,LL p)
{
///lucas(n,m,p)=c[n%p][m%p]*lucas(n/p,m/p,p);
LL ret=1LL;
while(n&&m)
{
LL a=n%p,b=m%p;
if(a<b) return 0;
ret=(ret*fact[a]*QuickPow((fact[b]*fact[a-b])%p,p-2,p))%p;
n/=p; m/=p;
}
return ret%p;
} int main()
{
int T_T;
scanf("%d",&T_T);
while(T_T--)
{
LL n,m,p;
cin>>n>>m>>p;
get_fact(p);
cout<<Lucas(n+m,m,p)<<endl;
}
return 0;
}
版权声明:本文博客原创文章。博客,未经同意,不得转载。
HDOJ 3037 Saving Beans的更多相关文章
- hdu 3037 Saving Beans(组合数学)
hdu 3037 Saving Beans 题目大意:n个数,和不大于m的情况,结果模掉p,p保证为素数. 解题思路:隔板法,C(nn+m)多选的一块保证了n个数的和小于等于m.可是n,m非常大,所以 ...
- hdu 3037 Saving Beans Lucas定理
Saving Beans Time Limit: 6000/3000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Tota ...
- hdu 3037 Saving Beans
Saving Beans Time Limit: 6000/3000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Tota ...
- hdu 3037——Saving Beans
Saving Beans Time Limit: 6000/3000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Tota ...
- poj—— 3037 Saving Beans
Saving Beans Time Limit: 6000/3000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Tot ...
- Hdu 3037 Saving Beans(Lucus定理+乘法逆元)
Saving Beans Time Limit: 3000 MS Memory Limit: 32768 K Problem Description Although winter is far aw ...
- HDU 3037 Saving Beans(Lucas定理模板题)
Problem Description Although winter is far away, squirrels have to work day and night to save beans. ...
- HDU 3037 Saving Beans (Lucas法则)
主题链接:pid=3037">http://acm.hdu.edu.cn/showproblem.php?pid=3037 推出公式为C(n + m, m) % p. 用Lucas定理 ...
- HDU 3037 Saving Beans(Lucas定理的直接应用)
解题思路: 直接求C(n+m , m) % p , 由于n , m ,p都非常大,所以要用Lucas定理来解决大组合数取模的问题. #include <string.h> #include ...
随机推荐
- Xcode 5.1.1 与 Xcode 6.0.1 共存
Xcode 5.1.1 (下面简称Xcode5)和Xcode 6.0.1(下面简称Xcode6)都是正式版本号.其应用程序文件名称都是"Xcode".假设通过AppStore升级或 ...
- php zip文件内容比較类
php zip 文件比較类,比較两个zip文件的内容,返回新增,删除,及同样的文件列表.临时仅仅支持单层. 需求:上传一个zip文件,zip内有非常多图片文件.须要对图片文件进行一系列非常耗时的处理. ...
- 模板引擎mustache.js
Javascript模板引擎mustache.js详解 阅读目录 1. 从一个简单真实的需求讲起 2. mustache的用法 3. mustache的思想 4. {{prop}}标签 5. {{ ...
- c# 获取某个对象的[公有属性]的名称,类型,值
/// <summary> /// 获取某个对象的[公有属性]的名称,类型,值 /// </summary> /// <typeparam name="T&qu ...
- 安装gcc 3.4
安装 gcc 3.4 f**k,不是为了编译0.11内核.我才懒得鸟3.4的版本号 源代码编译被我实践--"不归路",各种报错,我起码不止是了4个版本号的gcc,各种不兼容.各 ...
- web.xmlf多ilter在执行顺序
1.随着url-pattern路配置filter请务必先实施servlet-name路配置filter 2.随着url-partern路配置filter于.,按web.xml于filter-ma ...
- eclipse git 一个错误:the current branch is not configured for pull No value for key branch.xxx.merge found
eclipse git 一个错误:the current branch is not configured for pull No value for key branch.xxx.merge fou ...
- ZOJ Problem Set - 2563 Long Dominoes 【如压力dp】
称号:ZOJ Problem Set - 2563 Long Dominoes 题意:给出1*3的小矩形.求覆盖m*n的矩阵的最多的不同的方法数? 分析:有一道题目是1 * 2的.比較火.链接:这里 ...
- 构建安全的Xml Web Service系列之wse之证书存储位置
原文:构建安全的Xml Web Service系列之wse之证书存储位置 我们在前几天对xml web service的安全性提出了一些建议,大家可以通过以下地址访问: 构建安全的Xml Web Se ...
- HDU 1061 Rightmost Digit解决问题的方法
求大量N^N的值最右边的数字,即最低位. 它将能够解决一个简单二分法. 只是要注意溢出,只要把N % 10之后.我不会溢出,代替使用的long long. #include <stdio.h&g ...