如果您有n+1树,文章n+1埋不足一棵树m种子,法国隔C【n+m】【m】

大量的组合,以取mod使用Lucas定理:

Lucas(n,m,p) = C[n%p][m%p] × Lucas(n/p,m/p,p) ;

Saving Beans

Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)

Total Submission(s): 2314    Accepted Submission(s): 845

Problem Description
Although winter is far away, squirrels have to work day and night to save beans. They need plenty of food to get through those long cold days. After some time the squirrel family thinks that they have to solve a problem. They suppose that they will save beans
in n different trees. However, since the food is not sufficient nowadays, they will get no more than m beans. They want to know that how many ways there are to save no more than m beans (they are the same) in n trees.



Now they turn to you for help, you should give them the answer. The result may be extremely huge; you should output the result modulo p, because squirrels can’t recognize large numbers.
 
Input
The first line contains one integer T, means the number of cases.



Then followed T lines, each line contains three integers n, m, p, means that squirrels will save no more than m same beans in n different trees, 1 <= n, m <= 1000000000, 1 < p < 100000 and p is guaranteed to be a prime.
 
Output
You should output the answer modulo p.
 
Sample Input
2
1 2 5
2 1 5
 
Sample Output
3
3
Hint
Hint For sample 1, squirrels will put no more than 2 beans in one tree. Since trees are different, we can label them as 1, 2 … and so on.
The 3 ways are: put no beans, put 1 bean in tree 1 and put 2 beans in tree 1. For sample 2, the 3 ways are:
put no beans, put 1 bean in tree 1 and put 1 bean in tree 2.
 
Source
 

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm> using namespace std; typedef long long int LL; LL n,m,p; LL fact[100100]; LL QuickPow(LL x,LL t,LL m)
{
if(t==0) return 1LL;
LL e=x,ret=1LL;
while(t)
{
if(t&1) ret=(ret*e)%m;
e=(e*e)%m;
t>>=1LL;
}
return ret%m;
} void get_fact(LL p)
{
fact[0]=1LL;
for(int i=1;i<=p+10;i++)
fact[i]=(fact[i-1]*i)%p;
} LL Lucas(LL n,LL m,LL p)
{
///lucas(n,m,p)=c[n%p][m%p]*lucas(n/p,m/p,p);
LL ret=1LL;
while(n&&m)
{
LL a=n%p,b=m%p;
if(a<b) return 0;
ret=(ret*fact[a]*QuickPow((fact[b]*fact[a-b])%p,p-2,p))%p;
n/=p; m/=p;
}
return ret%p;
} int main()
{
int T_T;
scanf("%d",&T_T);
while(T_T--)
{
LL n,m,p;
cin>>n>>m>>p;
get_fact(p);
cout<<Lucas(n+m,m,p)<<endl;
}
return 0;
}

版权声明:本文博客原创文章。博客,未经同意,不得转载。

HDOJ 3037 Saving Beans的更多相关文章

  1. hdu 3037 Saving Beans(组合数学)

    hdu 3037 Saving Beans 题目大意:n个数,和不大于m的情况,结果模掉p,p保证为素数. 解题思路:隔板法,C(nn+m)多选的一块保证了n个数的和小于等于m.可是n,m非常大,所以 ...

  2. hdu 3037 Saving Beans Lucas定理

    Saving Beans Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Tota ...

  3. hdu 3037 Saving Beans

    Saving Beans Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Tota ...

  4. hdu 3037——Saving Beans

    Saving Beans Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Tota ...

  5. poj—— 3037 Saving Beans

    Saving Beans Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Tot ...

  6. Hdu 3037 Saving Beans(Lucus定理+乘法逆元)

    Saving Beans Time Limit: 3000 MS Memory Limit: 32768 K Problem Description Although winter is far aw ...

  7. HDU 3037 Saving Beans(Lucas定理模板题)

    Problem Description Although winter is far away, squirrels have to work day and night to save beans. ...

  8. HDU 3037 Saving Beans (Lucas法则)

    主题链接:pid=3037">http://acm.hdu.edu.cn/showproblem.php?pid=3037 推出公式为C(n + m, m) % p. 用Lucas定理 ...

  9. HDU 3037 Saving Beans(Lucas定理的直接应用)

    解题思路: 直接求C(n+m , m) % p , 由于n , m ,p都非常大,所以要用Lucas定理来解决大组合数取模的问题. #include <string.h> #include ...

随机推荐

  1. Android Volley 之自定义Request

    转载标明出处:http://blog.csdn.net/lmj623565791/article/details/24589837 今天群里一哥们需要自定义Volley的Request的例子,于是产生 ...

  2. #define XXX do{ XXX } while(0) 为什么使用

    #define XXX do{ XXX } while(0) 为什么使用 时常会遇到一个非常"奇怪的宏定义", rt.(欧西巴...思考不够深刻啊, 皮鞭, 啪啪啪) 近期又遇到这 ...

  3. 手动安装英特尔® 凌动™ Android* x86 模拟器映像

    android的模拟器实在是太慢了,慢的让人欲仙欲死,欲罢不能.猛然发现我的电脑是intel的CPU,我勒个去,换x86模拟器.然后悲剧了,伟大的gfw 我要装sdk,我要研究android开发,到底 ...

  4. V微软S2015下载:开展Win10/Linux/iOS多平台软件

    微软VS2015下载:开展Win10/Linux/iOS多平台软件 资源:IT之家作者:子非         责任编辑:子非   11月13日消息,微软刚刚宣布了 Visual Studio 2015 ...

  5. cocos2d-x 3.1.1 学习笔记[17] 关于这些活动功能

    供cocos2d-x通常使用的方法,我有一个好脸色.这项研究真的奖励. 向导首先,定义,实施一系列连续动作. 对于我们的行动能回调函数,我们必须申报并加以实施. void callBack(); vo ...

  6. LeetCode :: Convert Sorted Array (link list) to Binary Search Tree [tree]

    1.Given an array where elements are sorted in ascending order, convert it to a height balanced BST. ...

  7. pyspark简要原则

    概要 这是一个看前一段时间spark的python支持的时,有点简单的后pyspark内python代码,我们把一个一般流程.虽然几乎没有python,但基本上能看懂pyspark它是如何使不同的虚拟 ...

  8. UVa11488-Hyper Prefix Sets(trie树)

    H Hyper Prefix Sets Prefix goodness of a set string is length of longest common prefix*number of str ...

  9. ZOJ 2412 Farm Irrigation(DFS 条件通讯块)

    意甲冠军  两个农田管内可直接连接到壳体  他们将能够共享一个水源   有11种农田  管道的位置高于一定  一个农田矩阵  问至少须要多少水源 DFS的连通块问题  两个相邻农田的管道能够直接连接的 ...

  10. HDOJ 5000 Clone

    所有的属性,以满足一定的条件,是,财产和等于sum/2结果最大. Clone Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536 ...