有向无环图(DAG)的最小路径覆盖
DAG的最小路径覆盖
定义:在一个有向图中,找出最少的路径,使得这些路径经过了所有的点。
最小路径覆盖分为最小不相交路径覆盖和最小可相交路径覆盖。
最小不相交路径覆盖:每一条路径经过的顶点各不相同。如图,其最小路径覆盖数为3。即1->3>4,2,5。
最小可相交路径覆盖:每一条路径经过的顶点可以相同。如果其最小路径覆盖数为2。即1->3->4,2->3>5。
特别的,每个点自己也可以称为是路径覆盖,只不过路径的长度是0。
DAG的最小不相交路径覆盖
算法:把原图的每个点V拆成$V_x$和$V_y$两个点,如果有一条有向边A->B,那么就加边$A_x->B_y$。这样就得到了一个二分图。那么最小路径覆盖=原图的结点数-新图的最大匹配数。
证明:一开始每个点都是独立的为一条路径,总共有n条不相交路径。我们每次在二分图里找一条匹配边就相当于把两条路径合成了一条路径,也就相当于路径数减少了1。所以找到了几条匹配边,路径数就减少了多少。所以有最小路径覆盖=原图的结点数-新图的最大匹配数。
因为路径之间不能有公共点,所以加的边之间也不能有公共点,这就是匹配的定义。
习题:POJ1422
//
// main.cpp
// POJ1422最小不想交路径覆盖
//
// Created by beMaster on 16/4/8.
// Copyright © 2016年 beMaster. All rights reserved.
// #include <iostream>
#include <stdio.h>
#include <string.h>
#include <vector>
using namespace std;
const int N = + ;
vector<int> g[N];
int cy[N];
bool vis[N];
bool dfs(int u){
for(int i=; i<g[u].size(); ++i){
int v = g[u][i];
if(vis[v]) continue;
vis[v] = true;
if(cy[v]==- || dfs(cy[v])){
cy[v] = u;
return true;
}
}
return false;
}
int solve(int n){
int ret = ;
memset(cy, -, sizeof(cy));
for(int i=;i<=n;++i){
memset(vis, , sizeof(vis));
ret += dfs(i);
}
return n - ret;
}
int main(int argc, const char * argv[]) {
int t,n,m;
int u,v;
scanf("%d",&t);
while(t--){
scanf("%d%d",&n,&m);
for(int i=;i<=n;++i)
g[i].clear();
for(int i=;i<m;++i){
scanf("%d%d",&u,&v);
g[u].push_back(v);
} int ans = solve(n);
printf("%d\n",ans);
}
return ;
}
DAG的最小可相交路径覆盖
算法:先用floyd求出原图的传递闭包,即如果a到b有路径,那么就加边a->b。然后就转化成了最小不相交路径覆盖问题。
证明:为了连通两个点,某条路径可能经过其它路径的中间点。比如1->3->4,2->4->5。但是如果两个点a和b是连通的,只不过中间需要经过其它的点,那么可以在这两个点之间加边,那么a就可以直达b,不必经过中点的,那么就转化成了最小不相交路径覆盖。
题目:POJ2594
//
// main.cpp
// POJ2594最小可相交路径覆盖
//
// Created by beMaster on 16/4/8.
// Copyright © 2016年 beMaster. All rights reserved.
// #include <iostream>
#include <stdio.h>
#include <string.h>
#include <vector>
using namespace std;
const int N = + ;
bool dis[N][N];
bool vis[N];
int cy[N];
void floyd(int n){
for(int i=;i<=n;++i)
for(int j=;j<=n;++j)
for(int k=;k<=n;++k)
if(dis[i][k] && dis[k][j])//传递可达性
dis[i][j] = true;
}
bool dfs(int u, int n){
for(int i=;i<=n;++i){
if(!vis[i] && dis[u][i]){
vis[i] = true;
if(cy[i]==- || dfs(cy[i], n)){
cy[i] = u;
return true;
}
}
}
return false;
}
int solve(int n){
int cnt = ;
memset(cy,-,sizeof(cy));
for(int i=;i<=n;++i){
memset(vis,,sizeof(vis));
cnt += dfs(i, n);
}
return n - cnt;
}
int main(int argc, const char * argv[]) {
int n,m;
int a,b;
while(scanf("%d%d",&n,&m),n+m){
for(int i=;i<=n;++i)
for(int j=;j<=n;++j)
dis[i][j] = false;
for(int i=;i<=m;++i){
scanf("%d%d",&a,&b);
dis[a][b] = true;
}
floyd(n);
int ans = solve(n);
printf("%d\n",ans);
}
return ;
}
参考:
二分图大讲堂——彻底搞定最大匹配数(最小覆盖数)、最大独立数、最小路径覆盖、带权最优匹配
有向无环图(DAG)的最小路径覆盖的更多相关文章
- 大数据工作流任务调度--有向无环图(DAG)之拓扑排序
点击上方蓝字关注DolphinScheduler(海豚调度) |作者:代立冬 |编辑:闫利帅 回顾基础知识: 图的遍历 图的遍历是指从图中的某一个顶点出发,按照某种搜索方法沿着图中的边对图中的所有顶点 ...
- UVAlive3126 Taxi Cab Scheme(DAG的最小路径覆盖)
题目链接:http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=32568 [思路] DAG的最小路径覆盖. 将每个人看做一个结点,如 ...
- C#实现有向无环图(DAG)拓扑排序
对一个有向无环图(Directed Acyclic Graph简称DAG)G进行拓扑排序,是将G中所有顶点排成一个线性序列,使得图中任意一对顶点u和v,若边(u,v)∈E(G),则u在线性序列中出现在 ...
- 某种带权有向无环图(graph)的所有路径的求法
// 讨论QQ群:135202158 最近做某个东西,最后用图实现了,这里总结一下算法. 假设有以下带权有向无环图(连通或非连通,我这里用的是非连通的): 每个节点(node)可能与其他节点有向地相连 ...
- UVALive-3126 Taxi Cab Scheme (DAG的最小路径覆盖)
题目大意:要给n个人安排车,已知每个人的出发时间和起点与终点,问最少需要安排几辆车才能完成任务. 题目分析:最小路径覆盖.如果送完a到目的地后能在b出发之前赶来接b,那么连一条有向边a->b,最 ...
- POJ Treasure Exploration 【DAG交叉最小路径覆盖】
传送门:http://poj.org/problem?id=2594 Treasure Exploration Time Limit: 6000MS Memory Limit: 65536K To ...
- [笔记] 有向无环图 DAG
最小链覆盖 (最长反链) 最小链覆盖 \(=n-\) 最大匹配. 考虑首先每个点自成一条链,此时恰好有 \(n\) 条链,最终答案一定是合并(首尾相接)若干条链形成的. 将两点匹配的含义其实就是将链合 ...
- 【模板整合计划】图论—有向无环图 (DAG) 与树
[模板整合计划]图论-有向无环图 (DAG) 与树 一:[拓扑排序] 最大食物链计数 \(\text{[P4017]}\) #include<cstring> #include<cs ...
- 判断有向无环图(DAG)
1.拓扑排序 bfs 所有入度为0的先入选. 2.tarjan 1个点1个集合 3.暴力 一个点不能重新到达自己
- hdu1151 二分图(无回路有向图)的最小路径覆盖 Air Raid
欢迎参加——BestCoder周年纪念赛(高质量题目+多重奖励) Air Raid Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65 ...
随机推荐
- Nginx 负载均衡配置和策略
Nginx 的 HttpUpstreamModule 提供对后端(backend)server的简单负载均衡.一个最简单的 upstream 写法例如以下: upstream backend { se ...
- XDU 1284 寻找礼物
枚举+二分查找. A+B+C >= K ----> C >= K - A -B ----> 统计大于等于C的个数就可以. #include <cstdio&g ...
- MSSQL - SQL Server2008附加数据库失败 错误号:5120
附加数据库时,显示错误,错误信息为 一种解决方法为,设置mdf文件所在文件夹的权限(有些资料说只设置mdf文件的权限就好,但我试了不管用),在文件夹上右击——属性——安全,如图所示: 选择组或用户名中 ...
- WindowsPhone8中实现圆形图片的生成显示
原文 WindowsPhone8中实现圆形图片的生成显示 很多软件中(比如QQ)用到了许多圆形图片,作为用户头像等等,原始图片往往是方形的,那么怎么样将方形的图片显示成圆形呢? 一种方法是当背景为固定 ...
- Android颜色转换工具类ColorUtil
项目中需要根据ScrollView的滚动距离来动态设置Topbar的背景透明度,网上有类似的开源库FadingActionBar,使用的是ActionBar做的.而我的项目中并没有使用ActionBa ...
- ubuntu环境ceph配置入门(一)
环境:ubuntu server 14.04 64bit,安装ceph版本号0.79 正常情况下应有多个主机,这里为了高速入门以一台主机为例,多台主机配置方式类似. 1. 配置静态IP及主机名 静态I ...
- ALV双击单元格事件处理
*激发双击事件 FORM f_alv_user_command USING r_ucomm LIKE sy-ucomm rs_selfield TYPE slis_selfield. "先引 ...
- 注解框架---AndroidAnnotations
AndroidAnnotations是一个开源框架,旨在加快Android开发的效率.通过使用它开放出来的注解api,你差点儿可以使用在不论什么地方, 大大的降低了无关痛痒的代码量,让开发人员可以抽身 ...
- Spring MVC+JSP实现三级联动
jsp代码 <script type="text/javascript"> $(function() { initProvinces(); }); /** * 获取省列 ...
- 创作gtk源码级vim帮助文档 tags
创作gtk源码级vim帮助文档 tags 缘由 那只有看到源码了.在linux源码上有个网站 http://lxr.linux.no /+trees, 可以很方面的查出相应版本的代码实现,gtk没有. ...