2-SAT 裸题,搞之

#include<cstdio>
#include<cstring>
#include<cmath>
#include<stack>
#include<vector>
#include<algorithm>
using namespace std; const int maxn=+;
int N,M;
char s1[],s2[]; stack<int>S;
vector<int>G[maxn];
vector<int>FG[maxn];
int Belong[maxn];
int flag[maxn];
int Block; void init()
{
for(int i=; i<maxn; i++) G[i].clear();
for(int i=; i<maxn; i++) FG[i].clear();
memset(Belong,,sizeof Belong);
memset(flag,,sizeof flag);
while(!S.empty()) S.pop();
Block=;
} void addEgde(int x,int y)
{
G[x].push_back(y);
FG[y].push_back(x);
} void dfs1(int now)
{
flag[now]=;
for(int i=; i<G[now].size(); i++)
if(!flag[G[now][i]])
dfs1(G[now][i]);
S.push(now);
} void dfs2(int now)
{
Belong[now]=Block;
for(int i=; i<FG[now].size(); i++)
if(!Belong[FG[now][i]])
dfs2(FG[now][i]);
} bool judge()
{
for(int i=; i<*N; i++) if(!flag[i]) dfs1(i);
while(!S.empty())
{
int Top=S.top();
S.pop();
if(!Belong[Top])
{
Block++;
dfs2(Top);
}
}
for(int i=; i<N; i++)
if(Belong[*i]==Belong[*i+])
return ;
return ;
} int main()
{
while(~scanf("%d%d",&N,&M))
{
init();
for(int i=;i<=M;i++)
{
scanf("%s%s",s1,s2);
int num1=,num2=;
for(int i=;i<strlen(s1);i++) num1=num1*+s1[i]-'';
for(int i=;i<strlen(s2);i++) num2=num2*+s2[i]-''; num1--;num2--; if(s1[]=='+'&&s2[]=='+')
{
addEgde(*num1,*num2+);
addEgde(*num2,*num1+);
}
if(s1[]=='-'&&s2[]=='-')
{
addEgde(*num1+,*num2);
addEgde(*num2+,*num1);
}
if(s1[]=='+'&&s2[]=='-')
{
addEgde(*num1,*num2);
addEgde(*num2+,*num1+);
}
if(s1[]=='-'&&s2[]=='+')
{
addEgde(*num1+,*num2+);
addEgde(*num2,*num1);
}
}
if(judge()) printf("1\n");
else printf("0\n");
}
return ;
}

POJ 3905 Perfect Election的更多相关文章

  1. POJ 3905 Perfect Election(2-sat)

    POJ 3905 Perfect Election id=3905" target="_blank" style="">题目链接 思路:非常裸的 ...

  2. POJ 3905 Perfect Election (2-Sat)

    Perfect Election Time Limit: 5000MS   Memory Limit: 65536K Total Submissions: 438   Accepted: 223 De ...

  3. POJ 3905 Perfect Election (2-SAT 判断可行)

    题意:有N个人参加选举,有M个条件,每个条件给出:i和j竞选与否会只要满足二者中的一项即可.问有没有方案使M个条件都满足. 分析:读懂题目即可发现是2-SAT的问题.因为只要每个条件中满足2个中的一个 ...

  4. 图论--2-SAT--POJ 3905 Perfect Election

    Perfect Election Time Limit: 5000MS         Memory Limit: 65536K Total Submissions: 964         Acce ...

  5. POJ 3398 Perfect Service(树型动态规划,最小支配集)

    POJ 3398 Perfect Service(树型动态规划,最小支配集) Description A network is composed of N computers connected by ...

  6. OpenJudge 2810(1543) 完美立方 / Poj 1543 Perfect Cubes

    1.链接地址: http://bailian.openjudge.cn/practice/2810/ http://bailian.openjudge.cn/practice/1543/ http:/ ...

  7. POJ 3398 Perfect Service --最小支配集

    题目链接:http://poj.org/problem?id=3398 这题可以用两种上述讲的两种算法解:http://www.cnblogs.com/whatbeg/p/3776612.html 第 ...

  8. poj 1543 Perfect Cubes(注意剪枝)

    Perfect Cubes Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 14901   Accepted: 7804 De ...

  9. POJ 1730 Perfect Pth Powers(暴力枚举)

    题目链接: https://cn.vjudge.net/problem/POJ-1730 题目描述: We say that x is a perfect square if, for some in ...

随机推荐

  1. apache 添加到windows服务

    cmd命令行下 输入 “d:\apache\bin\httpd.exe” -k install 如果是resin的话直接运行目录下的setup就可以了, 前提是需要.net framework 3.5

  2. CDN技术详解及实现原理

    CDN技术详解 一本好的入门书是带你进入陌生领域的明灯,<CDN技术详解>绝对是带你进入CDN行业的那盏最亮的明灯.因此,虽然只是纯粹的重点抄录,我也要把<CDN技术详解>的精 ...

  3. php 上传缩放图片

    有时上传图片时因为图片太大了,不仅占用空间,消耗流量,而且影响浏(图片的尺寸大小不一).下面分享一种等比例不失真缩放图片的方法,这样,不管上传的图片尺有多大,都会自动压缩到我们设置尺寸值的范围之内.经 ...

  4. 根据字符串获取对应类型(Type) 转

    public static Type GetTypeByString(string type)        {            switch (type.ToLower())          ...

  5. Django: 之用户注册、缓存和静态网页

    Django 用户注册系统 Django 的源码中已经有登录,退出,重设密码等相关的视图函数,在下面这个app中 django.contrib.auth 可以点击对应的版本查看相关源代码:1.9  1 ...

  6. servlet第2讲(下集)----通过HttpServlet实现一个用户登录网站(继承HttpServlet)

    1.计划框架 2.先建立Login的servlet (1)建立Login,编写代码,进行编译     (2)配置web.xml (3)重新加载,并且验证 (4)解决乱码问题 (5)再次加载,然后验证 ...

  7. c#高级编程

    1..net才程序编译经过2步.首先把源代码编译成IL,这个是在visual studio中编译,然后是IL编译成机器语言,这个是在程序执行的时候进行的.

  8. vs当前不会命中断点,还没有为该文档加载任何符号

    今天发布网站之后,附加进程却怎么页不能命中断点,后来发现原来,我将发布的web.config文件覆盖掉了新生成的配置文件,其中一项:<compilation debug="false& ...

  9. 将decimal类型的数据转成2.12这样价钱的显示方式

    UnitPrice = string.Format("{0:.00}", m.UnitPrice),

  10. MyBatis-配置缓存

    <cache type="org.mybatis.caches.ehcache.LoggingEhcache"> <property name="tim ...