A - Bi-shoe and Phi-shoe (欧拉函数打表)
Description
Bamboo Pole-vault is a massively popular sport in Xzhiland. And Master Phi-shoe is a very popular coach for his success. He needs some bamboos for his students, so he asked his assistant Bi-Shoe to go to the market and buy them. Plenty of Bamboos of all possible integer lengths (yes!) are available in the market. According to Xzhila tradition,
Score of a bamboo = Φ (bamboo's length)
(Xzhilans are really fond of number theory). For your information, Φ (n) = numbers less than n which are relatively prime (having no common divisor other than 1) to n. So, score of a bamboo of length 9 is 6 as 1, 2, 4, 5, 7, 8 are relatively prime to 9.
The assistant Bi-shoe has to buy one bamboo for each student. As a twist, each pole-vault student of Phi-shoe has a lucky number. Bi-shoe wants to buy bamboos such that each of them gets a bamboo with a score greater than or equal to his/her lucky number. Bi-shoe wants to minimize the total amount of money spent for buying the bamboos. One unit of bamboo costs 1 Xukha. Help him.
Input
Input starts with an integer T (≤ 100), denoting the number of test cases.
Each case starts with a line containing an integer n (1 ≤ n ≤ 10000) denoting the number of students of Phi-shoe. The next line contains n space separated integers denoting the lucky numbers for the students. Each lucky number will lie in the range [1, 106].
Output
For each case, print the case number and the minimum possible money spent for buying the bamboos. See the samples for details.
Sample Input
3
5
1 2 3 4 5
6
10 11 12 13 14 15
2
1 1
Sample Output
Case 1: 22 Xukha
Case 2: 88 Xukha
Case 3: 4 Xukha
题意 : 给你 n 个数,分别找出大于等于这些数的欧拉函数值的 x ,使 x 的和最小
//我的思路:首先欧拉函数打表,再分别找出最小值
//之前纠结于 1 1 得出 4 的这组数据 后来看见 Φ (n) = numbers less than n which are relatively prime
//这个题中的规定和欧拉函数不一样 欧拉函数是小于等于 n , 所以在本题中 1 的值 不为 1 而是 0;
#include <iostream>
#include <algorithm>
#include <cstdio>
#define ll long long
using namespace std;
#define max 1123456 ll eular[max]; void init()
{
eular[]=;
for(int i=;i<max;i++)
eular[i]=i;
for(int i=;i<max;i++)
{
if(eular[i]==i)
{
for(int j=i;j<max;j+=i)
eular[j]=eular[j]/i*(i-);
}
}
} int main()
{
ll c,data[],ans,tmp=;
cin>>c;
init();
while(c--)
{
int n;
tmp++;
cin>>n;
ans=;
for(int i=;i<n;i++)
cin>>data[i];
for(int i=;i<n;i++)
{
for(int j=data[i]+;j<max;j++)
if(eular[j]>=data[i])
{
ans+=j;
break;
}
}
printf("Case %lld: %lld Xukha\n",tmp,ans);
}
return ;
}
A - Bi-shoe and Phi-shoe (欧拉函数打表)的更多相关文章
- hdu 2824 The Euler function 欧拉函数打表
The Euler function Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Other ...
- uva 11426 GCD - Extreme (II) (欧拉函数打表)
题意:给一个N,和公式 求G(N). 分析:设F(N)= gcd(1,N)+gcd(2,N)+...gcd(N-1,N).则 G(N ) = G(N-1) + F(N). 设满足gcd(x,N) 值为 ...
- POJ 2478 欧拉函数打表的运用
http://poj.org/problem?id=2478 此题只是用简单的欧拉函数求每一个数的互质数的值会超时,因为要求很多数据的欧拉函数值,所以选用欧拉函数打表法. PS:因为最后得到的结果会很 ...
- UVA 11426 GCD - Extreme (II)(欧拉函数打表 + 规律)
Given the value of N, you will have to find the value of G. The definition of G is given below:Here ...
- LightOJ - 1370 Bi-shoe and Phi-shoe (欧拉函数打表)
题意:给N个数,求对每个数ai都满足最小的phi[x]>=ai的x之和. 分析:先预处理出每个数的欧拉函数值phi[x].对于每个数ai对应的最小x值,既可以二分逼近求出,也可以预处理打表求. ...
- light1370 欧拉函数打表
/* 给定n个数ai,要求欧拉函数值大于ai的最小的数bi 求sum{bi} */ #include<bits/stdc++.h> using namespace std; #define ...
- 杭电多校第十场 hdu6434 Count 欧拉函数打表 快速打表模板
Problem I. Count Time Limit: 4000/2000 MS (Java/Others) Memory Limit: 524288/524288 K (Java/Other ...
- AcWing 201. 可见的点 (欧拉函数打表)打卡
在一个平面直角坐标系的第一象限内,如果一个点(x,y)与原点(0,0)的连线中没有通过其他任何点,则称该点在原点处是可见的. 例如,点(4,2)就是不可见的,因为它与原点的连线会通过点(2,1). 部 ...
- FZU 1759 欧拉函数 降幂公式
Description Given A,B,C, You should quickly calculate the result of A^B mod C. (1<=A,C<=1000 ...
随机推荐
- CodeForces 670D Magic Powder
二分. 二分一下答案,然后验证一下. #pragma comment(linker, "/STACK:1024000000,1024000000") #include<cst ...
- ModelState.IsValid一直为false的原因
一,问题:ModelState.IsValid一直为false 二,解决方法和原因, 由于这个方法中传过来的RegisterForm模型的字段,某一个为空值,则会造成这个验证验证为false,去注释掉 ...
- Ubuntu14.04浏览器Firefox安装flash播放插件
sudo apt-get update sudo apt-get install flashplugin-nonfree ================= 类飞秋软件 sudo apt-get in ...
- 利用requestjs优化响应式移动端js加载
html: <script data-main="main" src="require.js"></script> main.js re ...
- Meta标签中的format-detection属性及含义让IPHONE的数字可以改变颜色
format-detection翻译成中文的意思是“格式检测”,顾名思义,它是用来检测html里的一些格式的,那关于meta的format-detection属性主要是有以下几个设置: meta na ...
- 免费DDOS攻击测试工具大合集
FreeBuf微科普: DoS(Denial Of Service)攻击是指故意的攻击网络协议实现的缺陷或直接通过野蛮手段残忍地耗尽被攻击对象的资源,目的是让目标计算机或网络无法提供正常的服务或资源访 ...
- ios 开发证书 appids 描述文件关系
当你准备进行真机测试或者发布应用到App Store上去的时候, 免不了要申请相应的证书.(Development--测试证书. Distribution--发布证书) 进入证书管理相应网站https ...
- Docker 基本管理
镜像: Docker 运行容器前需要本地存在对应的镜像,如果镜像不存在本地,Docker 会从镜像仓库下载(默认是 Docker Hub 公共注册服务器中的仓库). 由于官方镜像pull很慢 我们这边 ...
- Masonry的一些等间距布局
控件之间的间距相等,但是控件的宽度是不定的. 下列的代码:定义间距为10,yellowview的宽度是由redView的宽度计算出来的. UIView *redView = [[UIView allo ...
- MyBatis面对Oracle数据库如何实现主键列自增长
因为Oracle数据库而言 不能够像SqlServer和MySql一样主键自增 而且MyBatis也没有提供直接的主键自增方法 所以我们自己使用查询语句来实现自增 实现代码: <insert i ...