题意:

给定n个点m条边的无向图。

以下m行给出边和边权

以下Q个询问。

Q行每行给出一条边(一定是m条边中的一条)

表示改动边权。

(数据保证改动后的边权比原先的边权大)

问:改动后的最小生成树的权值是多少。

每一个询问互相独立(即每次询问都是对于原图改动)

保证没有重边。

求:全部改动后的最小生成树权值的平均值。

思路:

首先跑一个最小生成树。

求得这个MST的权值 int mst;

对于每一个询问(u.v,dis);

若(u,v) 不是MST上的边,则此时的权值就是 mst

否则我们断开树边(u,v),然后找u点集和v点集之间的边中权值最小的边cost[u][v];

这样当前的权值就是 mst - g[u][v] + min(cost[u][v], dis);

剩下就是怎样计算cost;

MST会求得一个无根树。

我们把无根树转成以u为根时 ,对于v子树事实上是不变的。

剩下就是简单dp了

#pragma comment(linker, "/STACK:1024000000,1024000000")
#include <cstdio>
#include <cstring>
#include <string>
#include <iostream>
#include <queue>
#include <algorithm>
#include <cmath>
template <class T>
inline bool rd(T &ret) {
char c; int sgn;
if(c=getchar(),c==EOF) return 0;
while(c!='-'&&(c<'0'||c>'9')) c=getchar();
sgn=(c=='-')?-1:1;
ret=(c=='-')?0:(c-'0');
while(c=getchar(),c>='0'&&c<='9') ret=ret*10+(c-'0');
ret*=sgn;
return 1;
}
template <class T>
inline void pt(T x) {
if (x <0) {
putchar('-');
x = -x;
}
if(x>9) pt(x/10);
putchar(x%10+'0');
}
typedef long long ll;
using namespace std;
const ll inf = 100000000;
const int N = 3005;
ll g[N][N], d[N], mst, cost[N][N];
bool vis[N], choose[N][N];
int n, m;
vector<int> G[N];
ll dfs(int u, int fa, int src){
ll siz = inf;
for(int i = 0; i < G[u].size(); i++)
{
int v = G[u][i];
if(v == fa)continue;
ll tmp = dfs(v, u, src);
siz = min(siz, tmp);
cost[u][v] = cost[v][u] = min(cost[u][v], tmp);
}
if(fa != src)
siz = min(siz, g[u][src]);
return siz;
}
int pre[N];
void MST(){
for(int i = 0; i < n; i++)
for(int j = 0; j < n; j++)
cost[i][j] = g[i][j] = inf, choose[i][j] = 0; while(m--){
int u, v; ll dis; rd(u);rd(v); rd(dis);
g[u][v] = g[v][u] = min(g[u][v], dis);
}
for(int i = 0; i < n; i++)
{
d[i] = inf;
G[i].clear();
vis[i] = 0;
pre[i] = -1;
}
d[0] = 0;
mst = 0;
for(int i = 0; i < n; i++)
{
int pos = -1;
for(int j = 0; j < n; j++)
if(!vis[j] &&(pos == -1 || d[pos] > d[j]))
pos = j;
if(pre[pos]!=-1)
{
G[pos].push_back(pre[pos]);
G[pre[pos]].push_back(pos);
choose[pos][pre[pos]] = choose[pre[pos]][pos] = 1;
}
for(int j = 0; j < n; j++)
if(d[j] > g[j][pos])
{
d[j] = g[j][pos];
pre[j] = pos;
}
vis[pos] = 1;
mst += d[pos];
}
} int main() {
int q, u, v; ll dis;
while(cin>>n>>m, n+m) {
MST();
for(int i = 0; i < n; i++)
dfs(i, -1, i);
rd(q);
ll ans = 0;
for(int i = 1; i <= q; i++) {
rd(u); rd(v); rd(dis);
if(choose[u][v] == false)
ans += mst;
else
ans += mst - g[u][v] + min(cost[u][v], dis);
}
printf("%.4f\n",(double)ans/(double)q);
}
return 0;
}

HDU 4126 Genghis Khan the Conqueror MST+树形dp的更多相关文章

  1. HDU 4126 Genghis Khan the Conqueror 最小生成树+树形dp

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=4126 Genghis Khan the Conqueror Time Limit: 10000/50 ...

  2. HDU 4126 Genghis Khan the Conqueror (树形DP+MST)

    题意:给一图,n个点,m条边,每条边有个花费,给出q条可疑的边,每条边有新的花费,每条可疑的边出现的概率相同,求不能经过原来可疑边 (可以经过可疑边新的花费构建的边),注意每次只出现一条可疑的边,n个 ...

  3. hdu4126Genghis Khan the ConquerorGenghis Khan the Conqueror(MST+树形DP)

    题目请戳这里 题目大意:给n个点,m条边,每条边权值c,现在要使这n个点连通.现在已知某条边要发生突变,再给q个三元组,每个三元组(a,b,c),(a,b)表示图中可能发生突变的边,该边一定是图中的边 ...

  4. hdu4126Genghis Khan the Conqueror (最小生成树+树形dp)

    Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 327680/327680 K (Java/Others) Total Submiss ...

  5. HDU-4126 Genghis Khan the Conqueror 树形DP+MST (好题)

    题意:给出一个n个点m条边的无向边,q次询问每次询问把一条边权值增大后问新的MST是多少,输出Sum(MST)/q. 解法:一开始想的是破圈法,后来想了想应该不行,破圈法应该只能用于加边的情况而不是修 ...

  6. 刷题总结——Genghis Khan the Conqueror (hdu4126)

    题目: Genghis Khan(成吉思汗)(1162-1227), also known by his birth name Temujin(铁木真) and temple name Taizu(元 ...

  7. UVA- 1504 - Genghis Khan the Conqueror(最小生成树-好题)

    题意: n个点,m个边,然后给出m条边的顶点和权值,其次是q次替换,每次替换一条边,给出每次替换的边的顶点和权值,然后求出这次替换的最小生成树的值; 最后要你输出:q次替换的平均值.其中n<30 ...

  8. uvalive 5834 Genghis Khan The Conqueror

    题意: 给出一个图,边是有向的,现在给出一些边的变化的信息(权值大于原本的),问经过这些变换后,MST总权值的期望,假设每次变换的概率是相等的. 思路: 每次变换的概率相等,那么就是求算术平均. 首先 ...

  9. 【Uvalive 5834】 Genghis Khan the Conqueror (生成树,最优替代边)

    [题意] 一个N个点的无向图,先生成一棵最小生成树,然后给你Q次询问,每次询问都是x,y,z的形式, 表示的意思是在原图中将x,y之间的边增大(一定是变大的)到z时,此时最小生成数的值是多少.最后求Q ...

随机推荐

  1. ie 64bit调用activex控件

    1,首先,这是可能的.不要被网上一堆ie64调不了activex控件的文章误导了.flash就是一个现成的例子,flash支持ie64. 2,ie64只能调用64bit的activex控件.网上那些说 ...

  2. Android:Drag and Drop的应用

    最近看了下Drag and Drop部分的原文,觉得很有意思就像自己试着做一下,说实在的原文真的是不好读啊,要感谢那些为我们发表译文的大神们, 真的是不容易,原文中给了例子,但是只有后面零星的代码,真 ...

  3. C++ 载入dll

    1.新建一个项目生成dll 首先我们新建一个项目生成一个Dynamic Library(动态链接库) dll 里面非常简单,只有一个add方法.等下我们就要在其他项目里尝试载入这个dll,调用里面的这 ...

  4. 全民Scheme(0):lat的定义

    接下来我会写一写Scheme的学习笔记.嗯,Scheme是属于小众的语言,但合适用来教学的. 什么是lat,就是遍历list里的每一个S-expression,假设发现当中某个不是atom的,则返回f ...

  5. C# Http以文件的形式上传文件

    以下的是上传的方法: // <summary> /// 将本地文件上传到指定的服务器(HttpWebRequest方法) /// </summary> /// <para ...

  6. hdu2647 逆拓扑,链式前向星。

    pid=2647">原文地址 题目分析 题意 老板发工资,可是要保证发的工资数满足每一个人的期望,比方A期望工资大于B,仅仅需比B多1元钱就可以.老板发的最低工资为888元.输出老板最 ...

  7. copy算法

     copy------强化效率无所不用其极 copy(first,last,result)算法可将输入区间[first,last)内的元素拷贝到输出区间[result,result+(last-f ...

  8. MySQL的Master/Slave群集安装和配置

    本文介绍MySQL的Master/Slave群集安装和配置,版本号安装最新的稳定版GA 5.6.19. 为了支持有限HA.我们用Master/Slave读写简单孤立的集群.有限HA这是当Master不 ...

  9. 无向图的最短路径算法JAVA实现(转)

    一,问题描述 给出一个无向图,指定无向图中某个顶点作为源点.求出图中所有顶点到源点的最短路径. 无向图的最短路径其实是源点到该顶点的最少边的数目. 本文假设图的信息保存在文件中,通过读取文件来构造图. ...

  10. [置顶] iframe使用总结(实战)

    说在前面的话,iframe是可以做很多事情的. 例如: a>通过iframe实现跨域; b>使用iframe解决IE6下select遮挡不住的问题 c>通过iframe解决Ajax的 ...