一、前言

  在分析jdk1.8后的HashMap源码时,发现网上好多分析都是基于之前的jdk,而Java8的HashMap对之前做了较大的优化,其中最重要的一个优化就是桶中的元素不再唯一按照链表组合,也可以使用红黑树进行存储,总之,目标只有一个,那就是在安全和功能性完备的情况下让其速度更快,提升性能。好~下面就开始分析源码。

二、HashMap数据结构

  

  说明:上图很形象的展示了HashMap的数据结构(数组+链表+红黑树),桶中的结构可能是链表,也可能是红黑树,红黑树的引入是为了提高效率。所以可见,在分析源码的时候我们不知不觉就温习了数据结构的知识点,一举两得。

三、HashMap源码分析

  3.1 类的继承关系 

public class HashMap<K,V> extends AbstractMap<K,V> implements Map<K,V>, Cloneable, Serializable

  可以看到HashMap继承自父类(AbstractMap),实现了Map、Cloneable、Serializable接口。其中,Map接口定义了一组通用的操作;Cloneable接口则表示可以进行拷贝,在HashMap中,实现的是浅层次拷贝,即对拷贝对象的改变会影响被拷贝的对象;Serializable接口表示HashMap实现了序列化,即可以将HashMap对象保存至本地,之后可以恢复状态。

  3.2 类的属性 

public class HashMap<K,V> extends AbstractMap<K,V> implements Map<K,V>, Cloneable, Serializable {
// 序列号
private static final long serialVersionUID = 362498820763181265L;
// 默认的初始容量是16
static final int DEFAULT_INITIAL_CAPACITY = 1 << 4;
// 最大容量
static final int MAXIMUM_CAPACITY = 1 << 30;
// 默认的填充因子
static final float DEFAULT_LOAD_FACTOR = 0.75f;
// 当桶(bucket)上的结点数大于这个值时会转成红黑树
static final int TREEIFY_THRESHOLD = 8;
// 当桶(bucket)上的结点数小于这个值时树转链表
static final int UNTREEIFY_THRESHOLD = 6;
// 树的最小的容量,至少是 4 x TREEIFY_THRESHOLD = 32 然后为了避免(resizing 和 treeification thresholds) 设置成64
static final int MIN_TREEIFY_CAPACITY = 64;
// 存储元素的数组,总是2的幂次倍
transient Node<k,v>[] table;
// 存放具体元素的集
transient Set<map.entry<k,v>> entrySet;
// 存放元素的个数,注意这个不等于数组的长度。
transient int size;
// 每次扩容和更改map结构的计数器
transient int modCount;
// 临界值 当实际大小(容量*填充因子)超过临界值时,会进行扩容
int threshold;
// 填充因子
final float loadFactor;
}

  说明:类的数据成员很重要,以上也解释得很详细了,其中有一个参数MIN_TREEIFY_CAPACITY,笔者暂时还不是太清楚,有读者知道的话欢迎指导。

  3.3 类的构造函数

  1. HashMap(int, float)型构造函数

public HashMap(int initialCapacity, float loadFactor) {
// 初始容量不能小于0,否则报错
if (initialCapacity < 0)
throw new IllegalArgumentException("Illegal initial capacity: " +
initialCapacity);
// 初始容量不能大于最大值,否则为最大值
if (initialCapacity > MAXIMUM_CAPACITY)
initialCapacity = MAXIMUM_CAPACITY;
// 填充因子不能小于或等于0,不能为非数字
if (loadFactor <= 0 || Float.isNaN(loadFactor))
throw new IllegalArgumentException("Illegal load factor: " +
loadFactor);
// 初始化填充因子
this.loadFactor = loadFactor;
// 初始化threshold大小
this.threshold = tableSizeFor(initialCapacity);
}

  说明:tableSizeFor(initialCapacity)返回大于initialCapacity的最小的二次幂数值。

static final int tableSizeFor(int cap) {
int n = cap - 1;
n |= n >>> 1;
n |= n >>> 2;
n |= n >>> 4;
n |= n >>> 8;
n |= n >>> 16;
return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1;
}

  说明:>>> 操作符表示无符号右移,高位取0。

  2. HashMap(int)型构造函数。

public HashMap(int initialCapacity) {
// 调用HashMap(int, float)型构造函数
this(initialCapacity, DEFAULT_LOAD_FACTOR);
}

  3. HashMap()型构造函数。

public HashMap() {
// 初始化填充因子
this.loadFactor = DEFAULT_LOAD_FACTOR;
}

  4. HashMap(Map<? extends K>)型构造函数。

public HashMap(Map<? extends K, ? extends V> m) {
// 初始化填充因子
this.loadFactor = DEFAULT_LOAD_FACTOR;
// 将m中的所有元素添加至HashMap中
putMapEntries(m, false);
}

  说明:putMapEntries(Map<? extends K, ? extends V> m, boolean evict)函数将m的所有元素存入本HashMap实例中。 

final void putMapEntries(Map<? extends K, ? extends V> m, boolean evict) {
int s = m.size();
if (s > 0) {
// 判断table是否已经初始化
if (table == null) { // pre-size
// 未初始化,s为m的实际元素个数
float ft = ((float)s / loadFactor) + 1.0F;
int t = ((ft < (float)MAXIMUM_CAPACITY) ?
(int)ft : MAXIMUM_CAPACITY);
// 计算得到的t大于阈值,则初始化阈值
if (t > threshold)
threshold = tableSizeFor(t);
}
// 已初始化,并且m元素个数大于阈值,进行扩容处理
else if (s > threshold)
resize();
// 将m中的所有元素添加至HashMap中
for (Map.Entry<? extends K, ? extends V> e : m.entrySet()) {
K key = e.getKey();
V value = e.getValue();
putVal(hash(key), key, value, false, evict);
}
}
}

  3.4 重要函数分析

  1. putVal函数  

final V putVal(int hash, K key, V value, boolean onlyIfAbsent,
boolean evict) {
Node<K,V>[] tab; Node<K,V> p; int n, i;
// table未初始化或者长度为0,进行扩容
if ((tab = table) == null || (n = tab.length) == 0)
n = (tab = resize()).length;
// (n - 1) & hash 确定元素存放在哪个桶中,桶为空,新生成结点放入桶中(此时,这个结点是放在数组中)
if ((p = tab[i = (n - 1) & hash]) == null)
tab[i] = newNode(hash, key, value, null);
// 桶中已经存在元素
else {
Node<K,V> e; K k;
// 比较桶中第一个元素(数组中的结点)的hash值相等,key相等
if (p.hash == hash &&
((k = p.key) == key || (key != null && key.equals(k))))
// 将第一个元素赋值给e,用e来记录
e = p;
// hash值不相等,即key不相等;为红黑树结点
else if (p instanceof TreeNode)
// 放入树中
e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value);
// 为链表结点
else {
// 在链表最末插入结点
for (int binCount = 0; ; ++binCount) {
// 到达链表的尾部
if ((e = p.next) == null) {
// 在尾部插入新结点
p.next = newNode(hash, key, value, null);
// 结点数量达到阈值,转化为红黑树
if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st
treeifyBin(tab, hash);
// 跳出循环
break;
}
// 判断链表中结点的key值与插入的元素的key值是否相等
if (e.hash == hash &&
((k = e.key) == key || (key != null && key.equals(k))))
// 相等,跳出循环
break;
// 用于遍历桶中的链表,与前面的e = p.next组合,可以遍历链表
p = e;
}
}
// 表示在桶中找到key值、hash值与插入元素相等的结点
if (e != null) {
// 记录e的value
V oldValue = e.value;
// onlyIfAbsent为false或者旧值为null
if (!onlyIfAbsent || oldValue == null)
//用新值替换旧值
e.value = value;
// 访问后回调
afterNodeAccess(e);
// 返回旧值
return oldValue;
}
}
// 结构性修改
++modCount;
// 实际大小大于阈值则扩容
if (++size > threshold)
resize();
// 插入后回调
afterNodeInsertion(evict);
return null;
}

  说明:HashMap并没有直接提供putVal接口给用户调用,而是提供的put函数,而put函数就是通过putVal来插入元素的。

  2. getNode函数

final Node<K,V> getNode(int hash, Object key) {
Node<K,V>[] tab; Node<K,V> first, e; int n; K k;
// table已经初始化,长度大于0,根据hash寻找table中的项也不为空
if ((tab = table) != null && (n = tab.length) > 0 &&
(first = tab[(n - 1) & hash]) != null) {
// 桶中第一项(数组元素)相等
if (first.hash == hash && // always check first node
((k = first.key) == key || (key != null && key.equals(k))))
return first;
// 桶中不止一个结点
if ((e = first.next) != null) {
// 为红黑树结点
if (first instanceof TreeNode)
// 在红黑树中查找
return ((TreeNode<K,V>)first).getTreeNode(hash, key);
// 否则,在链表中查找
do {
if (e.hash == hash &&
((k = e.key) == key || (key != null && key.equals(k))))
return e;
} while ((e = e.next) != null);
}
}
return null;
}

  说明:HashMap并没有直接提供getNode接口给用户调用,而是提供的get函数,而get函数就是通过getNode来取得元素的。

  3. resize函数  

final Node<K,V>[] resize() {
// 当前table保存
Node<K,V>[] oldTab = table;
// 保存table大小
int oldCap = (oldTab == null) ? 0 : oldTab.length;
// 保存当前阈值
int oldThr = threshold;
int newCap, newThr = 0;
// 之前table大小大于0
if (oldCap > 0) {
// 之前table大于最大容量
if (oldCap >= MAXIMUM_CAPACITY) {
// 阈值为最大整形
threshold = Integer.MAX_VALUE;
return oldTab;
}
// 容量翻倍,使用左移,效率更高
else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY &&
oldCap >= DEFAULT_INITIAL_CAPACITY)
// 阈值翻倍
newThr = oldThr << 1; // double threshold
}
// 之前阈值大于0
else if (oldThr > 0)
newCap = oldThr;
// oldCap = 0并且oldThr = 0,使用缺省值(如使用HashMap()构造函数,之后再插入一个元素会调用resize函数,会进入这一步)
else {
newCap = DEFAULT_INITIAL_CAPACITY;
newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY);
}
// 新阈值为0
if (newThr == 0) {
float ft = (float)newCap * loadFactor;
newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ?
(int)ft : Integer.MAX_VALUE);
}
threshold = newThr;
@SuppressWarnings({"rawtypes","unchecked"})
// 初始化table
Node<K,V>[] newTab = (Node<K,V>[])new Node[newCap];
table = newTab;
// 之前的table已经初始化过
if (oldTab != null) {
// 复制元素,重新进行hash
for (int j = 0; j < oldCap; ++j) {
Node<K,V> e;
if ((e = oldTab[j]) != null) {
oldTab[j] = null;
if (e.next == null)
newTab[e.hash & (newCap - 1)] = e;
else if (e instanceof TreeNode)
((TreeNode<K,V>)e).split(this, newTab, j, oldCap);
else { // preserve order
Node<K,V> loHead = null, loTail = null;
Node<K,V> hiHead = null, hiTail = null;
Node<K,V> next;
// 将同一桶中的元素根据(e.hash & oldCap)是否为0进行分割,分成两个不同的链表,完成rehash
do {
next = e.next;
if ((e.hash & oldCap) == 0) {
if (loTail == null)
loHead = e;
else
loTail.next = e;
loTail = e;
}
else {
if (hiTail == null)
hiHead = e;
else
hiTail.next = e;
hiTail = e;
}
} while ((e = next) != null);
if (loTail != null) {
loTail.next = null;
newTab[j] = loHead;
}
if (hiTail != null) {
hiTail.next = null;
newTab[j + oldCap] = hiHead;
}
}
}
}
}
return newTab;
}

  说明:进行扩容,会伴随着一次重新hash分配,并且会遍历hash表中所有的元素,是非常耗时的。在编写程序中,要尽量避免resize。

  在resize前和resize后的元素布局如下

  说明:上图只是针对了数组下标为2的桶中的各个元素在扩容后的分配布局,其他各个桶中的元素布局可以以此类推。

四、针对HashMap的思考

  4.1. 关于扩容的思考

  从putVal源代码中我们可以知道,当插入一个元素的时候size就加1,若size大于threshold的时候,就会进行扩容。假设我们的capacity大小为32,loadFator为0.75,则threshold为24 = 32 * 0.75,此时,插入了25个元素,并且插入的这25个元素都在同一个桶中,桶中的数据结构为红黑树,则还有31个桶是空的,也会进行扩容处理,其实,此时,还有31个桶是空的,好像似乎不需要进行扩容处理,但是是需要扩容处理的,因为此时我们的capacity大小可能不适当。我们前面知道,扩容处理会遍历所有的元素,时间复杂度很高;前面我们还知道,经过一次扩容处理后,元素会更加均匀的分布在各个桶中,会提升访问效率。所以,说尽量避免进行扩容处理,也就意味着,遍历元素所带来的坏处大于元素在桶中均匀分布所带来的好处。如果有读者有不同意见,也欢迎讨论~

五、总结

  至此,HashMap的源码就分析到这里了,其中理解了其中的核心函数和数据结构,那么理解HashMap的源码就不困难了。当然,此次分析中还有一些知识点没有涉及到,如红黑树、序列化、拷贝等,以后有机会会进行详细的说明和讲解,谢谢各位园友的观看~

http://www.cnblogs.com/leesf456/p/5242233.html

JDK1.8源码分析之HashMap(一) (转)的更多相关文章

  1. 【集合框架】JDK1.8源码分析之HashMap(一) 转载

    [集合框架]JDK1.8源码分析之HashMap(一)   一.前言 在分析jdk1.8后的HashMap源码时,发现网上好多分析都是基于之前的jdk,而Java8的HashMap对之前做了较大的优化 ...

  2. 【集合框架】JDK1.8源码分析之HashMap(一)

    一.前言 在分析jdk1.8后的HashMap源码时,发现网上好多分析都是基于之前的jdk,而Java8的HashMap对之前做了较大的优化,其中最重要的一个优化就是桶中的元素不再唯一按照链表组合,也 ...

  3. JDK1.8源码分析之HashMap

    一.前言 在分析jdk1.8后的HashMap源码时,发现网上好多分析都是基于之前的jdk,而Java8的HashMap对之前做了较大的优化,其中最重要的一个优化就是桶中的元素不再唯一按照链表组合,也 ...

  4. 【集合框架】JDK1.8源码分析之HashMap

    一.前言 在分析jdk1.8后的HashMap源码时,发现网上好多分析都是基于之前的jdk,而Java8的HashMap对之前做了较大的优化,其中最重要的一个优化就是桶中的元素不再唯一按照链表组合,也 ...

  5. 【集合框架】JDK1.8源码分析之HashMap & LinkedHashMap迭代器(三)

    一.前言 在遍历HashMap与LinkedHashMap时,我们通常都会使用到迭代器,而HashMap的迭代器与LinkedHashMap迭代器是如何工作的呢?下面我们来一起分析分析. 二.迭代器继 ...

  6. 【集合框架】JDK1.8源码分析HashSet && LinkedHashSet(八)

    一.前言 分析完了List的两个主要类之后,我们来分析Set接口下的类,HashSet和LinkedHashSet,其实,在分析完HashMap与LinkedHashMap之后,再来分析HashSet ...

  7. JDK(五)JDK1.8源码分析【集合】HashMap

    本文转载自无始无终,原文连接 HashMap 在 JDK 1.8 后新增的红黑树结构 传统 HashMap 的缺点 JDK 1.8 以前 HashMap 的实现是 数组+链表,即使哈希函数取得再好,也 ...

  8. 集合之LinkedHashSet(含JDK1.8源码分析)

    一.前言 上篇已经分析了Set接口下HashSet,我们发现其操作都是基于hashMap的,接下来看LinkedHashSet,其底层实现都是基于linkedHashMap的. 二.linkedHas ...

  9. 集合之HashSet(含JDK1.8源码分析)

    一.前言 我们已经分析了List接口下的ArrayList和LinkedList,以及Map接口下的HashMap.LinkedHashMap.TreeMap,接下来看的是Set接口下HashSet和 ...

随机推荐

  1. 显示器 Linux 性能 18 (一个命令行工具传递)

    对于系统和网络管理员来说每天监控和调试Linux系统的性能问题是一项繁重的工作.在IT领域作为一名Linux系统的管理员工作5年后,我逐渐认识到监控和保持系统启动并执行是多么的不easy.基于此原因. ...

  2. Swift - 继承UIView实现自定义可视化组件(附记分牌样例)

    在iOS开发中,如果创建一个自定义的组件通常可以通过继承UIView来实现.下面以一个记分牌组件为例,演示了组件的创建和使用,以及枚举.协议等相关知识的学习. 效果图如下:    组件代码:Score ...

  3. J2SE学习小结

    开始接触Java的学习,Java 2 Standard Edition为Java2平台的标准版,其包括了构成Java语言核心的类,此番学习算是学习了Java体系中的基础部分. 学习框架大致整理如下: ...

  4. MySQL字符集编码

    MySQL字符集编码总结 之前内部博客上凯哥分享了一篇关于mysql字符集的文章,之前我对mysql字符集一块基本没有深究过,看到凯哥文章后有些地方有点疑惑,遂自己去看了mysql的官方文档,并參考了 ...

  5. Oracle 10g AND Oracle 11g手工建库案例--Oracle 11g

    Oracle 10g AND Oracle 11g手工建库案例--Oracle 11g 系统环境: 操作系统: RedHat EL6 Oracle:  Oracle 10g and Oracle 11 ...

  6. Git权威指南学习笔记(二)Git暂存区

    例如以下图所看到的: 左側为工作区,是我们的工作文件夹. 右側为版本号库,当中: index标记的是暂存区(stage),所处文件夹为.git/index,记录了文件的状态和变更信息. master标 ...

  7. ExtJs4 笔记(10) Ext.tab.Panel 选项卡

    本篇讲解选项卡控件. 一.基本选项卡 首先我们来定义一个基本的选项卡控件,其中每个Tab各有不同,Tab的正文内容可以有三种方式获取: 1.基本方式:通过定义html和items的方式. 2.读取其他 ...

  8. operator= 复制操作符的意外

    首先,看以下的代码的输出时什么: 上述代码做了最理所当然的事.就是将Derived的两个对象进行了交换.可是通过指针进行的赋值输出却不是预期的: 居然调用的是Base的operator=,也就意味着我 ...

  9. extjs desktop startmenu (開始菜单)

    extjs desktop 的開始菜单 二级菜单,仅仅是简单演示实现原理,如 须要动态生成,自己改造就可以,下面基本方法原理: 首先 建立一个js文件 生成開始菜单数据:  function Get ...

  10. OpenCV-Python教程(4、形态学处理)

    提示: 转载请详细注明原作者及出处,谢谢! 本文介绍使用OpenCV-Python进行形态学处理 本文不介绍形态学处理的基本概念,所以读者需要预先对其有一定的了解. 定义结构元素 形态学处理的核心就是 ...