Fast Food

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)

Total Submission(s): 2173    Accepted Submission(s): 930

Problem Description
The fastfood chain McBurger owns several restaurants along a highway. Recently, they have decided to build several depots along the highway, each one located at a restaurant and supplying several of the restaurants with the needed
ingredients. Naturally, these depots should be placed so that the average distance between a restaurant and its assigned depot is minimized. You are to write a program that computes the optimal positions and assignments of the depots.



To make this more precise, the management of McBurger has issued the following specification: You will be given the positions of n restaurants along the highway as n integers d1 < d2 < ... < dn (these are the distances measured from the company's headquarter,
which happens to be at the same highway). Furthermore, a number k (k <= n) will be given, the number of depots to be built.



The k depots will be built at the locations of k different restaurants. Each restaurant will be assigned to the closest depot, from which it will then receive its supplies. To minimize shipping costs, the total distance sum, defined as




must be as small as possible.



Write a program that computes the positions of the k depots, such that the total distance sum is minimized.
 
Input
The input file contains several descriptions of fastfood chains. Each description starts with a line containing the two integers n and k. n and k will satisfy 1 <= n <= 200, 1 <= k <= 30, k <= n. Following this will n lines containing
one integer each, giving the positions di of the restaurants, ordered increasingly.



The input file will end with a case starting with n = k = 0. This case should not be processed.
 
Output
For each chain, first output the number of the chain. Then output a line containing the total distance sum.



Output a blank line after each test case.
 
Sample Input
6 3
5
6
12
19
20
27
0 0
 
Sample Output
Chain 1
Total distance sum = 8
 
Source

解题思路:

题意为 一条路上有 n个商店,每一个商店有一个x坐标位置,有k个仓库,要把k个仓库安放在n个位置中的k个上面,每一个商店都向近期的仓库来获得补给,求怎么安放这k个仓库,使得每一个商店到相应仓库的距离仅仅和加起来最小,输出最小值。

解决本题要意识到两点:

1. 假设要在第i个位置和第j个位置之间安放仓库,那么要把它安放在  (i+j)/2 个位置上,(i+j)/2为整数, 才干保证从i到j个商店到仓库之间的距离之和最短。

2.假设依照题意把k个仓库安放在n个位置上,使得距离和最短,这样求得了最小值, 那么一定符合题意:每一个商店都向近期的仓库来获得补给,由于假设不是向近期的,距离和肯定不是最短

用dp[i][j] 代表 前j个商店,有i个仓库

那么状态转移方程为:

dp [ i  ]  [ j ] = min ( dp [ i ] [ j ] ,   dp  [ i-1 ]  [ k]  + cost [ k+1 ]  [ j ] )   i-1<=k<=j-1

dp[i][j] 要从前一个状态推出来,及前k个商店有i-1个仓库,k是不确定的,但能够确定它的范围,最小是i-1 (一个商店位置上放一个仓库),最大是j-1 ( 把第i个仓库放在第j个位置上) ,    cost [ i ] [ j ]为在i ,j之间放一个仓库的最小距离和,即前面提到的第1点。

代码:

#include <iostream>
#include <algorithm>
#include <stdio.h>
#include <cmath>
#include <string.h>
using namespace std;
int n,k;
int dp[32][210];//dp[i][j]前j个商店有i个仓库
int dis[210];
const int inf=0x3f3f3f3f; int cost(int i,int j)
{
int ans=0;
int mid=dis[(i+j)/2];
for(int k=i;k<=j;k++)
ans+=abs(dis[k]-mid);
return ans;
} int main()
{
int c=1;
while(scanf("%d%d",&n,&k)!=EOF)
{
if(!n||!k)
break;
for(int i=1;i<=n;i++)
scanf("%d",&dis[i]);
memset(dp,inf,sizeof(dp));
for(int i=1;i<=n;i++)
dp[1][i]=cost(1,i);
for(int i=2;i<=k;i++)//第i个仓库
for(int j=1;j<=n;j++)//前j个商店
{
for(int k=i-1;k<=j-1;k++)
dp[i][j]=min(dp[i][j],dp[i-1][k]+cost(k+1,j));
} printf("Chain %d\n",c++);
printf("Total distance sum = %d\n",dp[k][n]);
printf("\n");
}
return 0;
}

[ACM] HDU 1227 Fast Food (经典Dp)的更多相关文章

  1. hdu 1227 Fast Food(DP)

    题意: X轴上有N个餐馆.位置分别是D[1]...D[N]. 有K个食物储存点.每一个食物储存点必须和某个餐厅是同一个位置. 计算SUM(Di-(离第i个餐厅最近的储存点位置))的最小值. 1 < ...

  2. HDU 1003 Max Sum --- 经典DP

    HDU 1003    相关链接   HDU 1231题解 题目大意:给定序列个数n及n个数,求该序列的最大连续子序列的和,要求输出最大连续子序列的和以及子序列的首位位置 解题思路:经典DP,可以定义 ...

  3. HDU 1227 Fast Food

    题目地址:http://acm.hdu.edu.cn/showproblem.php?pid=1227 题意:一维坐标上有n个点,位置已知,选出k(k <= n)个点,使得所有n个点与选定的点中 ...

  4. HDU 1227 Fast Food (DP)

    题目链接 题意 : 有n个饭店,要求建k个供应点,要求每个供应点一定要建造在某个饭店的位置上,然后饭店都到最近的供应点拿货,求出所有饭店到最近的供应点的最短距离. 思路 : 一开始没看出来是DP,后来 ...

  5. [ACM] hdu 4405 Aeroplane chess (概率DP)

    Aeroplane chess Problem Description Hzz loves aeroplane chess very much. The chess map contains N+1 ...

  6. [ACM] hdu 5045 Contest (减少国家Dp)

    Contest Problem Description In the ACM International Collegiate Programming Contest, each team consi ...

  7. HDU 4064 Carcassonne(插头DP)(The 36th ACM/ICPC Asia Regional Fuzhou Site —— Online Contest)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4064 Problem Description Carcassonne is a tile-based ...

  8. HDU 2859 Phalanx(对称矩阵 经典dp样例)

    传送门: http://acm.hdu.edu.cn/showproblem.php?pid=2859 Phalanx Time Limit: 10000/5000 MS (Java/Others)  ...

  9. HDU 4616 Game(经典树形dp+最大权值和链)

    http://acm.hdu.edu.cn/showproblem.php?pid=4616 题意:给出一棵树,每个顶点有权值,还有存在陷阱,现在从任意一个顶点出发,并且每个顶点只能经过一次,如果经过 ...

随机推荐

  1. Android 框架炼成 教你怎样写组件间通信框架EventBus

    转载请标明出处:http://blog.csdn.net/lmj623565791/article/details/41096639 .本文出自:[张鸿洋的博客] 1.概述 关于Eventbus的介绍 ...

  2. urses.ascii.ispunct(ch):

    Nullege: A Search Engine for Python source code urses.ascii.ispunct(ch): TypeError: 'unicode' object ...

  3. SWT的GridLayout一些参数解释

    1. GridLayout类的说明GridLayout在包org.eclipse.swt.layout中,各参数意义如下:1. numColumns指定布局器中的列数2. horizontalSpac ...

  4. HDU 1164 Eddy&#39;s research I【素数筛选法】

    思路:将输入的这个数分成n个素数的相乘的结果,用一个数组存储起来.之后再输出就能够了 Eddy's research I Time Limit: 2000/1000 MS (Java/Others)  ...

  5. Oracle SQL Lesson (2) - 限制和排序数据

    重建scott用户@?/rdbms/admin/utlsampl.sql@--执行?--$ORACLE_HOME 字符区分大小写:SELECT last_name, job_id, departmen ...

  6. Android开发之Buidler模式初探结合AlertDialog.Builder解说

          什么是Buidler模式呢?就是将一个复杂对象的构建与它的表示分离,使得相同的构建过程能够创建不同的表示.Builder模式是一步一步创建一个复杂的对象,它同意用户能够仅仅通过指定复杂对象 ...

  7. 安装好.net framework后运行慢

    表现 系统有时运行慢,尤其是.net程序运行得相当慢 mscorsvw.exe与mscorsvw.exe *32两个进程挂在任务管理器里时不时地占着CPU 解决 运行以下两条命令,加快这两进程的运行, ...

  8. Windows Phone开发(10):常用控件(上)

    原文:Windows Phone开发(10):常用控件(上) Windows Phone的控件有几个来源,和传统的桌面应用程序开发或Web开发一样,有默认提供的控件和第三方开者发布的控件.一般而言,如 ...

  9. Understanding responsibilities is key to good object-oriented design(转)

    对象和数据的主要差别就是对象有行为,行为可以看成责任职责(responsibilities以下简称职责)的一种,理解职责是实现好的OO设计的关键.“Understanding responsibili ...

  10. winzip15.0许可证

    username:Juzhaofeng 授权码:MPZRP-Y7LWW-K1DKG-FM92E-2C5F5-ZEKFF