Fast Food

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)

Total Submission(s): 2173    Accepted Submission(s): 930

Problem Description
The fastfood chain McBurger owns several restaurants along a highway. Recently, they have decided to build several depots along the highway, each one located at a restaurant and supplying several of the restaurants with the needed
ingredients. Naturally, these depots should be placed so that the average distance between a restaurant and its assigned depot is minimized. You are to write a program that computes the optimal positions and assignments of the depots.



To make this more precise, the management of McBurger has issued the following specification: You will be given the positions of n restaurants along the highway as n integers d1 < d2 < ... < dn (these are the distances measured from the company's headquarter,
which happens to be at the same highway). Furthermore, a number k (k <= n) will be given, the number of depots to be built.



The k depots will be built at the locations of k different restaurants. Each restaurant will be assigned to the closest depot, from which it will then receive its supplies. To minimize shipping costs, the total distance sum, defined as




must be as small as possible.



Write a program that computes the positions of the k depots, such that the total distance sum is minimized.
 
Input
The input file contains several descriptions of fastfood chains. Each description starts with a line containing the two integers n and k. n and k will satisfy 1 <= n <= 200, 1 <= k <= 30, k <= n. Following this will n lines containing
one integer each, giving the positions di of the restaurants, ordered increasingly.



The input file will end with a case starting with n = k = 0. This case should not be processed.
 
Output
For each chain, first output the number of the chain. Then output a line containing the total distance sum.



Output a blank line after each test case.
 
Sample Input
6 3
5
6
12
19
20
27
0 0
 
Sample Output
Chain 1
Total distance sum = 8
 
Source

解题思路:

题意为 一条路上有 n个商店,每一个商店有一个x坐标位置,有k个仓库,要把k个仓库安放在n个位置中的k个上面,每一个商店都向近期的仓库来获得补给,求怎么安放这k个仓库,使得每一个商店到相应仓库的距离仅仅和加起来最小,输出最小值。

解决本题要意识到两点:

1. 假设要在第i个位置和第j个位置之间安放仓库,那么要把它安放在  (i+j)/2 个位置上,(i+j)/2为整数, 才干保证从i到j个商店到仓库之间的距离之和最短。

2.假设依照题意把k个仓库安放在n个位置上,使得距离和最短,这样求得了最小值, 那么一定符合题意:每一个商店都向近期的仓库来获得补给,由于假设不是向近期的,距离和肯定不是最短

用dp[i][j] 代表 前j个商店,有i个仓库

那么状态转移方程为:

dp [ i  ]  [ j ] = min ( dp [ i ] [ j ] ,   dp  [ i-1 ]  [ k]  + cost [ k+1 ]  [ j ] )   i-1<=k<=j-1

dp[i][j] 要从前一个状态推出来,及前k个商店有i-1个仓库,k是不确定的,但能够确定它的范围,最小是i-1 (一个商店位置上放一个仓库),最大是j-1 ( 把第i个仓库放在第j个位置上) ,    cost [ i ] [ j ]为在i ,j之间放一个仓库的最小距离和,即前面提到的第1点。

代码:

#include <iostream>
#include <algorithm>
#include <stdio.h>
#include <cmath>
#include <string.h>
using namespace std;
int n,k;
int dp[32][210];//dp[i][j]前j个商店有i个仓库
int dis[210];
const int inf=0x3f3f3f3f; int cost(int i,int j)
{
int ans=0;
int mid=dis[(i+j)/2];
for(int k=i;k<=j;k++)
ans+=abs(dis[k]-mid);
return ans;
} int main()
{
int c=1;
while(scanf("%d%d",&n,&k)!=EOF)
{
if(!n||!k)
break;
for(int i=1;i<=n;i++)
scanf("%d",&dis[i]);
memset(dp,inf,sizeof(dp));
for(int i=1;i<=n;i++)
dp[1][i]=cost(1,i);
for(int i=2;i<=k;i++)//第i个仓库
for(int j=1;j<=n;j++)//前j个商店
{
for(int k=i-1;k<=j-1;k++)
dp[i][j]=min(dp[i][j],dp[i-1][k]+cost(k+1,j));
} printf("Chain %d\n",c++);
printf("Total distance sum = %d\n",dp[k][n]);
printf("\n");
}
return 0;
}

[ACM] HDU 1227 Fast Food (经典Dp)的更多相关文章

  1. hdu 1227 Fast Food(DP)

    题意: X轴上有N个餐馆.位置分别是D[1]...D[N]. 有K个食物储存点.每一个食物储存点必须和某个餐厅是同一个位置. 计算SUM(Di-(离第i个餐厅最近的储存点位置))的最小值. 1 < ...

  2. HDU 1003 Max Sum --- 经典DP

    HDU 1003    相关链接   HDU 1231题解 题目大意:给定序列个数n及n个数,求该序列的最大连续子序列的和,要求输出最大连续子序列的和以及子序列的首位位置 解题思路:经典DP,可以定义 ...

  3. HDU 1227 Fast Food

    题目地址:http://acm.hdu.edu.cn/showproblem.php?pid=1227 题意:一维坐标上有n个点,位置已知,选出k(k <= n)个点,使得所有n个点与选定的点中 ...

  4. HDU 1227 Fast Food (DP)

    题目链接 题意 : 有n个饭店,要求建k个供应点,要求每个供应点一定要建造在某个饭店的位置上,然后饭店都到最近的供应点拿货,求出所有饭店到最近的供应点的最短距离. 思路 : 一开始没看出来是DP,后来 ...

  5. [ACM] hdu 4405 Aeroplane chess (概率DP)

    Aeroplane chess Problem Description Hzz loves aeroplane chess very much. The chess map contains N+1 ...

  6. [ACM] hdu 5045 Contest (减少国家Dp)

    Contest Problem Description In the ACM International Collegiate Programming Contest, each team consi ...

  7. HDU 4064 Carcassonne(插头DP)(The 36th ACM/ICPC Asia Regional Fuzhou Site —— Online Contest)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4064 Problem Description Carcassonne is a tile-based ...

  8. HDU 2859 Phalanx(对称矩阵 经典dp样例)

    传送门: http://acm.hdu.edu.cn/showproblem.php?pid=2859 Phalanx Time Limit: 10000/5000 MS (Java/Others)  ...

  9. HDU 4616 Game(经典树形dp+最大权值和链)

    http://acm.hdu.edu.cn/showproblem.php?pid=4616 题意:给出一棵树,每个顶点有权值,还有存在陷阱,现在从任意一个顶点出发,并且每个顶点只能经过一次,如果经过 ...

随机推荐

  1. ConditonHelper

    在网上其实已经有很多类似这种拼接sql条件的类,但是没有看到一个让我感觉完全满意的这样的类.最近看到 http://www.cnblogs.com/xtdhb/p/3811956.html 这博客,觉 ...

  2. 关于Opencv2.4.x中stitcher类的简单应用

    1.opencv2.4以上版本有stitcher类,可以简单方便的实现图像的拼接,目前只是简单的测试一下stitcher类的拼接功能,也是纠结了好长时间,最终发现是要在链接库中加上opencv_sti ...

  3. Android_模拟时钟内时针、分针触摸转动

    最近实现了android里的一个机能,在activity里面画了一个模拟的时针,然后触摸上面的时针跟分针可以实现调时间的功能. 其实,说起原来来还是挺简单的,但是我花了将近一周的时间才全部实现,有点惭 ...

  4. net平台下连接池

    http://www.cnblogs.com/visionwang/archive/2012/11/16/2774203.html net平台下连接池概述 ADO.NET已经为我们提供这样的连接池管理 ...

  5. windows phone 7 定位(获取经纬度),然后找到经纬度所在的位置(城市信息)

    原文:windows phone 7 定位(获取经纬度),然后找到经纬度所在的位置(城市信息) 前几天做项目用到, 代码贴给大家. /// <summary> /// 获取当前位置的经纬度 ...

  6. Android Application plugin

          在网易云阅读App上看到了插件管理功能,刚好自己也需要以插件的模式来扩展已有的功能,于是研究了一下,下面是一张网易云阅读App提供的插件模式,只需下载相应的插件就扩展了相应的功能,非常方便 ...

  7. 通过 HTTP 头进行 SQL 注入(转)

    英文原文:DatabaseTube,翻译:开源中国 在漏洞评估和渗透测试中,确定目标应用程序的输入向量是第一步.这篇文章解释了别人是如何通过HTTP头部对你的数据库进行SQL注入攻击的,以及讨论下选择 ...

  8. 开源Office Word——DocX

    1.前言 请阅读前请看以下这位大神的文章 http://www.cnblogs.com/asxinyu/archive/2013/02/22/2921861.html 另附两个附件 1.DocX.DL ...

  9. HDU1176_免费馅饼【号码塔】

    免费馅饼 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) Total Submi ...

  10. 无状态会话bean(3)---远程业务接口(没有排版)

    迄今为止,我们仅仅讨论了使用一个本地业务接口的会话bean.在这样的情况下.本地意味着仅仅能由执行在同一个应用程序server实例的JavaEE组件声明会话bean的依赖性.比如.远程client不可 ...