题目链接:hdu_5726_GCD

题意:

给你n个数(n<=1e5)然后m个询问(m<=1e5),每个询问一个区间,问你这个区间的GCD是多少,并且输出从1到n有多少个区间的GCD和这个区间的相同

题解:

对于第一个问,直接上线段树维护一下区间GCD就行了,对于第二个问,直接上区间GCD维护的板子。

 #include<cstdio>
#include<algorithm>
#include<map>
#define ls l,m,rt<<1
#define rs m+1,r,rt<<1|1
using namespace std;
typedef long long ll;
map<int,ll>mp;
const int N=1e5+;
int n,i,j,a[N],l[N],v[N],tr[N<<]; void init(){
mp.clear();
scanf("%d",&n);
for(int i=;i<=n;i++)scanf("%d",a+i);
for(int i=;i<=n;i++)for(v[i]=a[i],j=l[i]=i;j;j=l[j]-){
v[j]=__gcd(v[j],a[i]);
while(l[j]>&&__gcd(a[i],v[l[j]-])==__gcd(a[i],v[j]))l[j]=l[l[j]-];
mp[v[j]]+=j-l[j]+;
}
} void build(int l=,int r=n,int rt=){
if(l==r){tr[rt]=a[l];return;}
int m=(l+r)>>;
build(ls),build(rs);
tr[rt]=__gcd(tr[rt<<],tr[rt<<|]);
} int ask(int L,int R,int l=,int r=n,int rt=){
if(L<=l&&r<=R)return tr[rt];
int m=(l+r)>>;
if(R<=m)return ask(L,R,ls);
if(L>m)return ask(L,R,rs);
return __gcd(ask(L,R,ls),ask(L,R,rs));
} int main(){
int t,ic=,k,x,y;
scanf("%d",&t);
while(t--){
init(),build();
scanf("%d",&k);
printf("Case #%d:\n",ic++);
while(k--){
scanf("%d%d",&x,&y);
int tp=ask(x,y);
printf("%d %lld\n",tp,mp[tp]);
}
}
return ;
}

hdu_5726_GCD(线段树维护区间+预处理)的更多相关文章

  1. POJ.2763 Housewife Wind ( 边权树链剖分 线段树维护区间和 )

    POJ.2763 Housewife Wind ( 边权树链剖分 线段树维护区间和 ) 题意分析 给出n个点,m个询问,和当前位置pos. 先给出n-1条边,u->v以及边权w. 然后有m个询问 ...

  2. Can you answer these queries V SPOJ - GSS5 (分类讨论+线段树维护区间最大子段和)

    recursion有一个整数序列a[n].现在recursion有m次询问,每次她想知道Max { A[i]+A[i+1]+...+A[j] ; x1 <= i <= y1 , x2 &l ...

  3. 线段树维护区间前k小

    线段树维护区间前k小 $ solution: $ 觉得超级钢琴太麻烦?在这里线段树提供一条龙服务 . 咳咳,开始讲正题!这道题我们有一个和超级钢琴复杂度一样 $ ~O(~\sum x\times lo ...

  4. CodeForces - 587E[线段树+线性基+差分] ->(线段树维护区间合并线性基)

    题意:给你一个数组,有两种操作,一种区间xor一个值,一个是查询区间xor的结果的种类数 做法一:对于一个给定的区间,我们可以通过求解线性基的方式求出结果的种类数,而现在只不过将其放在线树上维护区间线 ...

  5. FJUT3568 中二病也要敲代码(线段树维护区间连续最值)题解

    题意:有一个环,有1~N编号,m次操作,将a位置的值改为b,问你这个环当前最小连续和多少(不能全取也不能不取) 思路:用线段树维护一个区间最值连续和.我们设出两个变量Lmin,Rmin,Mmin表示区 ...

  6. 滑动窗口(poj,线段树维护区间最值)

    题目描述 现在有一堆数字共N个数字(N<=10^6),以及一个大小为k的窗口.现在这个从左边开始向右滑动,每次滑动一个单位,求出每次滑动后窗口中的最大值和最小值. 例如: The array i ...

  7. 51nod 1376【线段树维护区间最大值】

    引自:wonter巨巨的博客 定义 dp[i] := 以数字 i(不是下标 i)为结尾的最长上升长度 然后用线段树维护 dp[i]: 每个节点维护 2 个信息,一个是当前区间的最大上升长度,一个是最大 ...

  8. [CSP-S模拟测试]:椎(线段树维护区间最值和单调栈)

    题目描述 虽不能至,心向往之. $Treap=Tree+Heap$ 椎$=$树$+$堆 小$\pi$学习了计算机科学中的数据结构$Treap$. 小$\pi$知道$Treap$指的是一种树. 小$\p ...

  9. 【GDKOI2016Day1T1-魔卡少女】【拆位】线段树维护区间内所有连续子区间的异或和

    题意:给出N个数,M个操作.操作有修改和询问两种,每次修改将一个数改成另一个数,每次询问一个区间的所有连续子区间的异或和.n,m<=100000,ai<=1000 题解: 当年(其实也就是 ...

随机推荐

  1. Python基础篇-day3

    主要内容:字典 集合 文件处理 字符编码 1.字典dict简介dict就是key value值,索引有意义,数据无序 key定义规则:a:不可变--数字.字符串.元组(可变--列表.字典)b:不能重复 ...

  2. JavaScript(7)——事件2.0

    事件 [事件类型] 不同的事件类型具有不同的信息. [UI事件] 指的是那些不一定与用户操作有关的事件.当用户与页面上的元素交互时触发. load事件:当页面完全加载后,就会 触发window 上面的 ...

  3. Pyramid of Glasses(递推)

    Pyramid of Glasses time limit per test 1 second memory limit per test 256 megabytes input standard i ...

  4. HDU 5898 odd-even number(2016沈阳网络选拔赛 数位DP)

    定义DP[pos][pre][odd][even],pos代表当前数位,pre代表前一位的数值,odd代表到前一位连续的奇数个数,even代表到前一位连续偶数个数. odd和even肯定至少有一个为0 ...

  5. EXCEL应用:高级筛选里的条件或和与的条件怎么写 例:不包含,包含等

    ============================================================= a列包含b列,在c列中显示b列信息, =INDEX(B:B,MIN(IF(I ...

  6. svn rollback: 恢复到上一版本

    18:48:32svn的文件版本是168,我想用167的版本覆盖掉168的版本如何搞? 18:52:47先把本地的那个文件用rm命令删掉,然后,使用svn up -r 167 文件路径,UP下来的文件 ...

  7. listview必须设置数据适配器才能显示出来

    listview必须设置数据适配器才能显示出来,哪怕只设置一个空的数据适配器都行: lvTabDetail.setAdapter(new NewsListAdapter()); class NewsL ...

  8. Linux 任务控制(bg job fg nohup &)

    一. 简介     Linux/Unix 区别于微软平台最大的优点就是真正的多用户,多任务.因此在任务管理上也有别具特色的管理思想.我们知道,在 Windows 上面,我们要么让一个程序作为服务在后台 ...

  9. s7-300 第9讲 定时器

  10. 工控中的windows

    今后的windows如何在工业应用中发展,之前的windows如何保证安全的运行,如果只专注于消费,生产上是否还需要windows,如果那样,windows真的只有windows了