BloomFilter布隆过滤器
BloomFilter 简介
当一个元素被加入集合时,通过K个散列函数将这个元素映射成一个位数组中的K个点,把它们置为1。检索时,我们只要看看这些点是不是都是1就(大约)知道集合中有没有它了:如果这些点有任何一个0,则被检元素一定不在;如果都是1,则被检元素很可能在。
优点:相比于其它的数据结构,布隆过滤器在空间和时间方面都有巨大的优势。布隆过滤器存储空间和插入/查询时间都是常数(O(k))。而且它不存储元素本身,在某些对保密要求非常严格的场合有优势。
缺点:一定的误识别率和删除困难。
要使用BloomFilter,需要引入guava包:
<dependency>
<groupId>com.google.guava</groupId>
<artifactId>guava</artifactId>
<version>23.0</version>
</dependency>
测试分两步:
1、往过滤器中放一百万个数,然后去验证这一百万个数是否能通过过滤器
2、另外找一万个数,去检验漏网之鱼的数量
/**
* 测试布隆过滤器(可用于redis缓存穿透)
*
* @author xwj
*/
public class TestBloomFilter { private static int total = ;
private static BloomFilter<Integer> bf = BloomFilter.create(Funnels.integerFunnel(), total);
// private static BloomFilter<Integer> bf = BloomFilter.create(Funnels.integerFunnel(), total, 0.001); public static void main(String[] args) {
// 初始化1000000条数据到过滤器中
for (int i = ; i < total; i++) {
bf.put(i);
} // 匹配已在过滤器中的值,是否有匹配不上的
for (int i = ; i < total; i++) {
if (!bf.mightContain(i)) {
System.out.println("有坏人逃脱了~~~");
}
} // 匹配不在过滤器中的10000个值,有多少匹配出来
int count = ;
for (int i = total; i < total + ; i++) {
if (bf.mightContain(i)) {
count++;
}
}
System.out.println("误伤的数量:" + count);
} }
运行结果:

运行结果表示,遍历这一百万个在过滤器中的数时,都被识别出来了。一万个不在过滤器中的数,误伤了320个,错误率是0.03左右。
看下BloomFilter的源码:
public static <T> BloomFilter<T> create(Funnel<? super T> funnel, int expectedInsertions) {
return create(funnel, (long) expectedInsertions);
}
public static <T> BloomFilter<T> create(Funnel<? super T> funnel, long expectedInsertions) {
return create(funnel, expectedInsertions, 0.03); // FYI, for 3%, we always get 5 hash functions
}
public static <T> BloomFilter<T> create(
Funnel<? super T> funnel, long expectedInsertions, double fpp) {
return create(funnel, expectedInsertions, fpp, BloomFilterStrategies.MURMUR128_MITZ_64);
}
static <T> BloomFilter<T> create(
Funnel<? super T> funnel, long expectedInsertions, double fpp, Strategy strategy) {
......
}
BloomFilter一共四个create方法,不过最终都是走向第四个。看一下每个参数的含义:
funnel:数据类型(一般是调用Funnels工具类中的)
expectedInsertions:期望插入的值的个数
fpp 错误率(默认值为0.03)
strategy 哈希算法(楼主也不懂啥意思)
在最后一个create方法中,设置一个断点:


上面的numBits,表示存一百万个int类型数字,需要的位数为7298440,700多万位。理论上存一百万个数,一个int是4字节32位,需要4*8*1000000=3200万位。如果使用HashMap去存,按HashMap50%的存储效率,需要6400万位。可以看出BloomFilter的存储空间很小,只有HashMap的1/10左右
上面的numHashFunctions,表示需要5个函数去存这些数字
使用第三个create方法,我们设置下错误率:
private static BloomFilter<Integer> bf = BloomFilter.create(Funnels.integerFunnel(), total, 0.0003);
再运行看看:

此时误伤的数量为4,错误率为0.04%左右。

当错误率设为0.0003时,所需要的位数为16883499,1600万位,需要12个函数
和上面对比可以看出,错误率越大,所需空间和时间越小,错误率越小,所需空间和时间约大
BloomFilter布隆过滤器的更多相关文章
- 第三百五十八节,Python分布式爬虫打造搜索引擎Scrapy精讲—将bloomfilter(布隆过滤器)集成到scrapy-redis中
第三百五十八节,Python分布式爬虫打造搜索引擎Scrapy精讲—将bloomfilter(布隆过滤器)集成到scrapy-redis中,判断URL是否重复 布隆过滤器(Bloom Filter)详 ...
- 三十七 Python分布式爬虫打造搜索引擎Scrapy精讲—将bloomfilter(布隆过滤器)集成到scrapy-redis中
Python分布式爬虫打造搜索引擎Scrapy精讲—将bloomfilter(布隆过滤器)集成到scrapy-redis中,判断URL是否重复 布隆过滤器(Bloom Filter)详解 基本概念 如 ...
- 将bloomfilter(布隆过滤器)集成到scrapy-redis中
Python分布式爬虫打造搜索引擎Scrapy精讲—将bloomfilter(布隆过滤器)集成到scrapy-redis中,判断URL是否重复 布隆过滤器(Bloom Filter)详解 基本概念 如 ...
- BloomFilter(布隆过滤器)
原文链接:http://blog.csdn.net/qq_38646470/article/details/79431659 1.概念: 如果想判断一个元素是不是在一个集合里,一般想到的是将所有元素保 ...
- BloomFilter布隆过滤器使用
从上一篇可以得知,BloomFilter的关键在于hash算法的设定和bit数组的大小确定,通过权衡得到一个错误概率可以接受的结果. 算法比较复杂,也不是我们研究的范畴,我们直接使用已有的实现. go ...
- 使用BloomFilter布隆过滤器解决缓存击穿、垃圾邮件识别、集合判重
Bloom Filter是一个占用空间很小.效率很高的随机数据结构,它由一个bit数组和一组Hash算法构成.可用于判断一个元素是否在一个集合中,查询效率很高(1-N,最优能逼近于1). 在很多场景下 ...
- 白话布隆过滤器BloomFilter
通过本文将了解到以下内容: 查找问题的一般思路 布隆过滤器的基本原理 布隆过滤器的典型应用 布隆过滤器的工程实现 场景说明: 本文阐述的场景均为普通单机服务器.并非分布式大数据平台,因为在大数据平台下 ...
- 布隆过滤器(BloomFilter)持久化
摘要 Bloomfilter运行在一台机器的内存上,不方便持久化(机器down掉就什么都没啦),也不方便分布式程序的统一去重.我们可以将数据进行持久化,这样就克服了down机的问题,常见的持久化方法包 ...
- HBase之八--(3):Hbase 布隆过滤器BloomFilter介绍
布隆过滤器( Bloom filters) 数据块索引提供了一个有效的方法,在访问一个特定的行时用来查找应该读取的HFile的数据块.但是它的效用是有限的.HFile数据块的默认大小是64KB,这个大 ...
随机推荐
- [ASE][Daily Scrum]11.05
在昨天的课程之后经过讨论进行了初步的分工,并制定出了我们的一个两周计划. 尚没有和老师讨论,已经询问了时间没有收到回复,等老师那边讨论过后我会在更新这个部分. 第一阶段的目标是用户能够在一个空白的地图 ...
- 深度学习主机环境配置: Ubuntu16.04+GeForce GTX 1080+TensorFlow
接上文<深度学习主机环境配置: Ubuntu16.04+Nvidia GTX 1080+CUDA8.0>,我们继续来安装 TensorFlow,使其支持GeForce GTX 1080显卡 ...
- asp.net web api 跨域问题
缘起 以前在asp.net mvc时代,很少出现跨域问题 自从使用了asp.net web api + angular (1/2)之后,开始有跨域问题了. 简单普及下跨域: 我的理解是只要是前台页面与 ...
- .net下WinDbg使用说明
加载调试文件 .loadby sos mscorwks #.Net 3.5版本及以下 .loadby sos clr #.Net 4.0 WinDbg的基本命令 !threads #显示所有线程 !d ...
- 【Java基础】反射和注解
前言 在Java中,反射机制和注解机制一直是一个很重要的概念,那么他们其中的原理是怎么样呢,我们不仅仅需要会使用,更要知其然而之所以然. 目录 反射机制 反射如何使用 注解定义 注解机制原理 注解如何 ...
- 一步步Cobol 400 上手自学入门教程01 - 基础概念
先学习基础概念 1.COBOL字符:包含: User-defined words 用户定义字符 System-names Reserved words 关键字 2.用户定义字符User-defin ...
- django-子项目
当我们开始做一个项目的时候 ,当我们做的项目越来越大的时候py文件已经不足以分担 并且看起来不清晰 所以我们需要 新建一个子项目 这样的话可以方便管理 我们要建立子项目的话先进入那个项目的文件 ...
- 修改git全局初始化的用户名
今天我把文件上传到码云的时候出现 翻译的话就是 用户名不能多个值 这样的错误 所以想要解决这个错误的话非常简单 $ git config --global --replace-all user ...
- B2C电商项目
经历四个月的自学. 结合所学的知识(HTML,CSS,javascript,jQuery,Mysql,Redis,Django,celery,fastDfs,haystack,whoosh,uWSGI ...
- Vim实用技巧系列 - tab和空格的转换
有时候,我们会修改一些代码,而这些代码中的tab设定和我们自己的设定不一样.例如,我们自己的设定是以两个空格来代替tab,而要修改的代码则是使用tab.那么,我们应该怎样快速的将又有的tab转换为空格 ...