1. cv2.equalizeHist(img)  # 表示进行直方图均衡化

参数说明:img表示输入的图片

2.cv2.createCLAHA(clipLimit=8.0, titleGridSize=(8, 8))  用于生成自适应均衡化图像

参数说明:clipLimit颜色对比度的阈值, titleGridSize进行像素均衡化的网格大小,即在多少网格下进行直方图的均衡化操作

直方图均衡化:一般可以用来提升图片的亮度, 在上面一节中,我们可以看出在150-200之间所占的频数特别的大,频数均衡化指的是让频数的分布看起来更加均匀一些

主要实现的手段

上图中的左边的图是原始数据, 右边的图是进行函数映射后的灰度值

首先对各个灰度值做频数统计,计算其概率,根据像素的灰度值计算出累积概率,最后将累积概率 * (255-0) 做为函数映射后的灰度值,

这样做的目的,可以使得灰度值之间的间隔更小,即一些频数较大的灰度值补充给了频数较小的灰度值,从而实现了灰度值的均衡化

代码:

第一步:读入图片

第二步:使用cv2.equalizeHist(img)均衡化像素

第三步:使用plt.hist 画出均衡化的直方图

第四步:使用plt.imshow 画出均衡化后的图像

import cv2
import numpy as np
import matplotlib.pyplot as plt # 第一步:读入图片
img = cv2.imread('cat.jpg', 0) # 第二步: 使用cv2.equalizeHist实现像素点的均衡化
ret = cv2.equalizeHist(img) # 第三步:使用plt.hist绘制像素直方图
plt.subplot(121)
plt.hist(img.ravel(), 256)
plt.subplot(122)
plt.hist(ret.ravel(), 256)
plt.show() # 第四步:使用cv2.imshow()绘值均衡化的图像
cv2.imshow('ret', np.hstack((img, ret)))
cv2.waitKey(0)

这种全局的均衡化也会存在一些问题,由于整体亮度的提升,也会使得局部图像的细节变得模糊,因为我们需要进行分块的局部均衡化操作

代码:

第一步:使用cv2.createCLAHE(clipLimit=2.0, titleGridSize=(8, 8)) 实例化均衡直方图函数
第二步:使用.apply进行均衡化操作

第三步:进行画图操作

# 使用自适应直方图均衡化
# 第一步:实例化自适应直方图均衡化函数
clahe = cv2.createCLAHE(clipLimit=2.0,
tileGridSize=(8, 8)) # 第二步:进行自适应直方图均衡化
clahe = clahe.apply(img) # 第三步:进行图像的展示
cv2.imshow('imgs', np.hstack((img, ret, clahe)))
cv2.waitKey(0)
cv2.destroyAllWindows()

可以看出自适应均衡化没有使得人物脸部的细节消失

机器学习进阶-直方图与傅里叶变化-直方图均衡化 1.cv2.equalizeHist(进行直方图均衡化) 2. cv2.createCLAHA(用于生成自适应均衡化图像)的更多相关文章

  1. 机器学习进阶-直方图与傅里叶变换-图像直方图 1.cv2.calc(生成图像的像素频数分布(直方图))

    1. cv2.calc([img], [0], mask, [256], [0, 256])  # 用于生成图像的频数直方图 参数说明: [img]表示输入的图片, [0]表示第几个通道, mask表 ...

  2. 机器学习进阶-直方图与傅里叶变换-傅里叶变换(高低通滤波) 1.cv2.dft(进行傅里叶变化) 2.np.fft.fftshift(将低频移动到图像的中心) 3.cv2.magnitude(计算矩阵的加和平方根) 4.np.fft.ifftshift(将低频和高频移动到原来位置) 5.cv2.idft(傅里叶逆变换)

    1. cv2.dft(img, cv2.DFT_COMPLEX_OUTPUT) 进行傅里叶变化 参数说明: img表示输入的图片, cv2.DFT_COMPLEX_OUTPUT表示进行傅里叶变化的方法 ...

  3. 机器学习进阶-案例实战-答题卡识别判 1.cv2.getPerspectiveTransform(获得投射变化后的H矩阵) 2.cv2.warpPerspective(H获得变化后的图像) 3.cv2.approxPolyDP(近似轮廓) 4.cv2.threshold(二值变化) 7.cv2.countNonezeros(非零像素点个数)6.cv2.bitwise_and(与判断)

    1.H = cv2.getPerspectiveTransform(rect, transform_axes) 获得投射变化后的H矩阵 参数说明:rect表示原始的位置左上,右上,右下,左下, tra ...

  4. 机器学习进阶-案例实战-图像全景拼接-图像全景拼接(RANSCA) 1.sift.detectAndComputer(获得sift图像关键点) 2.cv2.findHomography(计算单应性矩阵H) 3.cv2.warpPerspective(获得单应性变化后的图像) 4.cv2.line(对关键点位置进行连线画图)

    1. sift.detectAndComputer(gray, None)  # 计算出图像的关键点和sift特征向量 参数说明:gray表示输入的图片 2.cv2.findHomography(kp ...

  5. 机器学习进阶-图像形态学操作-开运算与闭运算 1.cv2.morphologyEx(进行各类形态学变化) 2.op=cv2.MORPH_OPEN(先腐蚀后膨胀) 3.op=cv2.MORPH_CLOSE(先膨胀后腐蚀)

    1.cv2.morphologyEx(src, op, kernel) 进行各类形态学的变化 参数说明:src传入的图片,op进行变化的方式, kernel表示方框的大小 2.op =  cv2.MO ...

  6. 机器学习进阶-目标跟踪-KCF目标跟踪方法 1.cv2.multiTracker_create(构造选框集合) 2. cv2.TrackerKCF_create(获得KCF追踪器) 3. cv2.resize(变化图像大小) 4.cv2.selectROI(在图像上框出选框)

    1. tracker = cv2.multiTracker_create() 获得追踪的初始化结果 2.cv2.TrackerKCF_create() 获得KCF追踪器 3.cv2.resize(fr ...

  7. 机器学习进阶-目标追踪-SSD多进程执行 1.cv2.dnn.readnetFromCaffe(用于读取已经训练好的caffe模型) 2.delib.correlation_tracker(生成追踪器) 5.cv2.writer(将图片写入视频中) 6.cv2.dnn.blobFromImage(图片归一化) 10.multiprocessing.process(生成进程)

    1. cv2.dnn.readNetFromCaffe(prototxt, model)  用于进行SSD网络的caffe框架的加载 参数说明:prototxt表示caffe网络的结构文本,model ...

  8. 机器学习进阶-光流估计 1.cv2.goodFeaturesToTrack(找出光流估计所需要的角点) 2.cv2.calcOpticalFlowPyrLK(获得光流检测后的角点位置) 3.cv2.add(进行像素点的加和)

    1.cv2.goodFeaturesToTrack(old_gray, mask=None, **feature_params)  用于获得光流估计所需要的角点参数说明:old_gray表示输入图片, ...

  9. 机器学习进阶-项目实战-信用卡数字识别 1.cv2.findContour(找出轮廓) 2.cv2.boudingRect(轮廓外接矩阵位置) 3.cv2.threshold(图片二值化操作) 4.cv2.MORPH_TOPHAT(礼帽运算突出线条) 5.cv2.MORPH_CLOSE(闭运算图片内部膨胀) 6. cv2.resize(改变图像大小) 7.cv2.putText(在图片上放上文本)

    7. cv2.putText(img, text, loc, text_font, font_scale, color, linestick) # 参数说明:img表示输入图片,text表示需要填写的 ...

随机推荐

  1. [UE4]游戏主循环

    游戏的运行模型 理解游戏的运行模型,对处理很多游戏错误有非常大的帮助. 游戏是有一个主循环的.那么游戏主循环做了什么事情呢? 游戏主循环一次就表示一帧,游戏主循环包括:接受输入.处理游戏逻辑.渲染.S ...

  2. [UE4]函数分组

    函数分组相当于C#里面的“#region #end region”折叠注释

  3. [UE4]Size To content自动适配大小

  4. 在MySQL中实现Rank高级排名函数

    MySQL中没有Rank排名函数,当我们需要查询排名时,只能使用MySQL数据库中的基本查询语句来查询普通排名.尽管如此,可不要小瞧基础而简单的查询语句,我们可以利用其来达到Rank函数一样的高级排名 ...

  5. 如何把RabbitMQ卸载干净

    原文转载至:https://blog.csdn.net/w893932747/article/details/81018191 To uninstall RabbitMQ and Erlang fro ...

  6. HDFS 入门介绍

    HDFS简介 HDFS(Hadoop Distributed File System,Hadoop分布式文件系统),它是一个高度容错性的系统,适合部署在廉价的机器上.HDFS能提供高吞吐量的数据访问, ...

  7. python 基本数据类型常用方法总结

    [引言] python中基本数据类型的有很多常用方法,熟悉这些方法有助于不仅提升了编码效率,而且能写出高质量代码,本文做总结 int .bit_length:返回二进制长度 str 切片索引超出不会报 ...

  8. HBase配置性能调优

    因官方Book Performance Tuning部分章节没有按配置项进行索引,不能达到快速查阅的效果.所以我以配置项驱动,重新整理了原文,并补充一些自己的理解,如有错误,欢迎指正. 配置优化 zo ...

  9. oi造数据

    #include<cstdio> #include<cstdlib> #include<cstring> #include<ctime> #includ ...

  10. MySQL ERROR 1300 (HY000): Invalid utf8 character string

    load data报错 原因:原始数据含有 中文\中文 这样的带斜线的字符串. 解决方案:导出的时候替换 replace(d.role_name,'\\','.' ),这样导入时候就不用处理了