HDOJ4261 Estimation
一道需要用堆初始化的\(DP\)
原题链接
显然对于每一个部分,当\(b[i]\)为\(a\)对于部分的中位数时,差错最小。设\(S(x,y)\)表示\(x\sim y\)这一部分的差错。
\(DP\)的转移方程应该并不难推。
定义\(f[i][j]\)表示前\(i\)个数字分成\(j\)组导致的差错的最小值。
\(\qquad\qquad f[i][j]=\min\limits_{k=0}^{i-1}\{f[i][j],f[k][j-1]+S(k+1,i)\}\)
如果我们直接暴力计算\(S\),显然会超时,所以我们需要初始化\(S\),且因为在初始化过程中需要用到动态中位数,所以我们采用一个小根堆和一个大根堆来维护。
我是维护小根堆堆顶作为中位数。
先在小根堆中插入第一个数,定为当前中位数。
然后循环扫到下一个数,若该数比当前小根堆堆顶小,则插入大根堆,否则插入小根堆。
而在插入过程中,必须保证小根堆的大小比大根堆大\(1\)或相等,而在循环的过程中,小根堆堆顶即是当前区间内的中位数。
#include<cstdio>
#include<queue>
#include<vector>
#include<cstring>
using namespace std;
const int N = 2010;
const int K = 27;
int f[N][K], a[N], v[N][N];
priority_queue<int>bg;
priority_queue<int, vector<int>, greater<int> >sm;
int re()
{
int x = 0;
char c = getchar();
bool p = 0;
for (; c<'0' || c>'9'; c = getchar())
p = (c == '-' || p) ? 1 : 0;
for (; c >= '0'&&c <= '9'; c = getchar())
x = x * 10 + (c - '0');
return p ? -x : x;
}
inline int minn(int x, int y)
{
return x < y ? x : y;
}
int main()
{
int i, j, n, m, k, s_sm, s_bg;
while (1)
{
n = re();
m = re();
if (!n && !m)
return 0;
for (i = 1; i <= n; i++)
a[i] = re();
for (i = 1; i <= n; i++)
{
while (!sm.empty())
sm.pop();
while (!bg.empty())
bg.pop();
for (j = i + 1, s_sm = a[i], s_bg = 0, sm.push(a[i]); j <= n; j++)
{
if (a[j] < sm.top())
{
bg.push(a[j]);
s_bg += a[j];
}
else
{
sm.push(a[j]);
s_sm += a[j];
}
if (sm.size() > bg.size() + 1)
{
bg.push(k = sm.top());
s_sm -= k;
s_bg += k;
sm.pop();
}
if (bg.size() > sm.size())
{
sm.push(k = bg.top());
s_bg -= k;
s_sm += k;
bg.pop();
}
v[i][j] = s_sm - sm.size()*sm.top() + bg.size()*sm.top() - s_bg;
}
}
memset(f, 60, sizeof(f));
f[0][0] = 0;
for (j = 1; j <= m; j++)
for (i = j; i <= n; i++)
for (k = 0; k < i; k++)
f[i][j] = minn(f[i][j], f[k][j - 1] + v[k + 1][i]);
printf("%d\n", f[n][m]);
}
return 0;
}
HDOJ4261 Estimation的更多相关文章
- 萌新笔记——Cardinality Estimation算法学习(一)(了解基数计算的基本概念及回顾求字符串中不重复元素的个数的问题)
最近在菜鸟教程上自学redis.看到Redis HyperLogLog的时候,对"基数"以及其它一些没接触过(或者是忘了)的东西产生了好奇. 于是就去搜了"HyperLo ...
- Noise Contrastive Estimation
Notes from Notes on Noise Contrastive Estimation and Negative Sampling one sample: \[x_i \to [y_i^0, ...
- 手势估计- Hand Pose Estimation
http://blog.csdn.net/myarrow/article/details/51933651 1. 目前进展 1.1 相关资料 1)HANDS CVPR 2016 2 ...
- SQL Server 2014里的针对基数估计的新设计(New Design for Cardinality Estimation)
对于SQL Server数据库来说,性能一直是一个绕不开的话题.而当我们去分析和研究性能问题时,执行计划又是一个我们一直关注的重点之一. 我们知道,在进行编译时,SQL Server会根据当前的数据库 ...
- Click Models for Web Search(2) - Parameter Estimation
在Click Model中进行参数预估的方法有两种:最大似然(MLE)和期望最大(EM).至于每个click model使用哪种参数预估的方法取决于此model中的随机变量的特性.如果model中的随 ...
- 解读Cardinality Estimation<基数估计>算法(第一部分:基本概念)
基数计数(cardinality counting)是实际应用中一种常见的计算场景,在数据分析.网络监控及数据库优化等领域都有相关需求.精确的基数计数算法由于种种原因,在面对大数据场景时往往力不从心, ...
- Time vs Story Points Estimation [转]
One of the most common questions we get is whether to estimate in time or points. It seems like poin ...
- 【Deep Learning学习笔记】Efficient Estimation of Word Representations in Vector Space_google2013
标题:Efficient Estimation of Word Representations in Vector Space 作者:Tomas Mikolov 发表于:ICLR 2013 主要内容: ...
- Comparing randomized search and grid search for hyperparameter estimation
Comparing randomized search and grid search for hyperparameter estimation Compare randomized search ...
随机推荐
- windows 允许空密码登陆
HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\Lsa 这个注册表键值下的limitblankpassworduse项 修改为0或者1
- Linux下怎么创建和进入带有空格的文件夹
有时候需要创建带有空格的文件夹,虽然这不是一个好的习惯,但是偶尔会遇到.用的最多的是很多时候需要进入带有空格的文件夹,如"a b"是一个文件夹名. 创建:mkdir "a ...
- rsync+inotify实现数据实时同步
rsync rsync是linux系统下的数据镜像备份工具.支持远程同步,本地复制,或者与其他SSH.rsync主机同步. 优点: 1).可以镜像保存整个目录树和文件系统.保存源目录整个目录树和文件系 ...
- preg_match一些问题
<?php$string = 'The quick brown fox jumps over the lazy dog.';$patterns = array();$patterns[0] = ...
- 已知一个函数rand7()能够生成1-7的随机数,请给出一个函数rand10(),该函数能够生成1-10的随机数。
题目: 已知一个函数rand7()能够生成1-7的随机数,请给出一个函数,该函数能够生成1-10的随机数. 思路: 假如已知一个函数能够生成1-49的随机数,那么如何以此生成1-10的随机数呢? 解法 ...
- poj3252(组合数)
题目链接:http://poj.org/problem?id=3252 题意:给定s.e,求[s,e]之间的Round Number的个数,RN数为二进制表示中0的个数大于1的个数的数,s.e< ...
- 侯捷STL课程及源码剖析学习3: 深度探索容器list
一.容器概览 上图为 GI STL 2.9的各种容器.图中以内缩方式来表达基层与衍生层的关系.所谓的衍生,并非继承(inheritance)关系,而是内含(containment)关系.例如 heap ...
- Vue之常用语法
变量的定义: var定义的变量:只有全局作用域和函数作用域.有变量提升,先打印后定义变量不会报错,打印结果为undefined let定义的变量:没有变量提升 ——>有局 ...
- Codeforces Beta Round #65 (Div. 2)
Codeforces Beta Round #65 (Div. 2) http://codeforces.com/contest/71 A #include<bits/stdc++.h> ...
- @ResponseBody使用须知
-------------------siwuxie095 @ResponseBody 使用须知 使用 @ResponseBody 注解映射响应体 @ResponseBody 注解可被应用于方法上,标 ...