题意

题目链接

Sol

思路就是根据期望的线性性直接拿前缀和算贡献。。

这题输出的时候是不需要约分的qwq

如果你和我一样为了AC不追求效率的话直接#define int __int128就行了。。

代码十分清新

#include<bits/stdc++.h>
#define int __int128
using namespace std;
const int MAXN = 1e6 + 10;
inline int read() {
char c = getchar(); int x = 0, f = 1;
while(c < '0' || c > '9') {if(c == '-') f = -1; c = getchar();}
while(c >= '0' && c <= '9') x = x * 10 + c - '0', c = getchar();
return x * f;
}
void print(int x) {
if(x < 0) putchar('-'), x = -x;
if (x > 9) print(x / 10);
putchar('0' + x % 10);
}
int N, M, qwq, s[MAXN], a[MAXN], ans, Lim;
int get(int dep) {
return 1 << (Lim - (dep - 1));
}
void Build(int l, int r, int dep, int sum) {
ans += (a[r] - a[l - 1]) * get(dep);
if(l == r) {s[l] = sum + get(dep); return ;}
int mid = l + r >> 1;
Build(l, mid, dep + 1, sum + get(dep));
Build(mid + 1, r,dep + 1, sum + get(dep));
}
signed main() {
N = read(); M = read(); qwq = read();
for(int cur = 1; cur <= N; Lim ++, cur <<= 1);
for(int i = 1; i <= N; i++) a[i] = read(), a[i] += a[i - 1];
Build(1, N, 1, 0);
for(int i = 1; i <= N; i++) s[i] += s[i - 1];
while(M--) {
int l = read(), r = read(), v = read();
ans += ((s[r] - s[l - 1]) * v);
print(((ans * qwq) >> Lim)); putchar('\n');
}
return 0;
}

洛谷P3924 康娜的线段树(期望 前缀和)的更多相关文章

  1. 洛谷 P3924 康娜的线段树 解题报告

    P3924 康娜的线段树 题目描述 小林是个程序媛,不可避免地康娜对这种人类的"魔法"产生了浓厚的兴趣,于是小林开始教她\(OI\). 今天康娜学习了一种叫做线段树的神奇魔法,这种 ...

  2. 洛谷 P3924 康娜的线段树

    P3924 康娜的线段树 题目描述 小林是个程序媛,不可避免地康娜对这种人类的“魔法”产生了浓厚的兴趣,于是小林开始教她OI. 今天康娜学习了一种叫做线段树的神奇魔法,这种魔法可以维护一段区间的信息, ...

  3. P3924 康娜的线段树(期望)

    P3924 康娜的线段树 看起来$O(nlogn)$可过其实由于巨大常数是无法通过的 $O(nlogn)$:70pts 我们手玩样例发现 线段树上某个节点的期望值$f[o]=(f[lc]+f[rc]) ...

  4. P3924 康娜的线段树

    P3924 康娜的线段树 题目描述 小林是个程序媛,不可避免地康娜对这种人类的"魔法"产生了浓厚的兴趣,于是小林开始教她OI. 今天康娜学习了一种叫做线段树的神奇魔法,这种魔法可以 ...

  5. luogu P3924 康娜的线段树

    题面传送门 我们可以画图找规律 这里没图,要看图可以去看M_sea dalao的题解(逃 可以发现单个节点\(i\)对答案的贡献为该节点的点权\(*\frac{1}{2^{dep_i}}\)(\(de ...

  6. 洛谷 P3373 【模板】线段树 2

    洛谷 P3373 [模板]线段树 2 洛谷传送门 题目描述 如题,已知一个数列,你需要进行下面三种操作: 将某区间每一个数乘上 xx 将某区间每一个数加上 xx 求出某区间每一个数的和 输入格式 第一 ...

  7. 洛谷P3372 【模板】线段树 1

    P3372 [模板]线段树 1 153通过 525提交 题目提供者HansBug 标签 难度普及+/提高 提交  讨论  题解 最新讨论 [模板]线段树1(AAAAAAAAA- [模板]线段树1 洛谷 ...

  8. 洛谷P4891 序列(势能线段树)

    洛谷题目传送门 闲话 考场上一眼看出这是个毒瘤线段树准备杠题,发现实在太难调了,被各路神犇虐哭qwq 考后看到各种优雅的暴力AC......宝宝心里苦qwq 思路分析 题面里面是一堆乱七八糟的限制和性 ...

  9. 洛谷 P2574 XOR的艺术(线段树 区间异或 区间求和)

    To 洛谷.2574 XOR的艺术 题目描述 AKN觉得第一题太水了,不屑于写第一题,所以他又玩起了新的游戏.在游戏中,他发现,这个游戏的伤害计算有一个规律,规律如下 1. 拥有一个伤害串为长度为n的 ...

随机推荐

  1. 一文搞懂Java环境,轻松实现Hello World!

    在上篇文章中,我们介绍了Java自学大概的路线.然而纸上得来终觉浅,今天我们教大家写第一个java demo.(ps:什么是demo?Demo的中文含意为“示范",Demo源码可以理解为某种 ...

  2. 【UML】:时序图

    时序图表达了类之间调用关系,以及调用时序关系. Actor: 调用者实例化类的对象,执行者. Lifeline: 生命线,竖的虚线.上方方框是类名表示存在的时间,从上至下表示时间流逝.Lifeline ...

  3. TypeScript设计模式之装饰、代理

    看看用TypeScript怎样实现常见的设计模式,顺便复习一下. 学模式最重要的不是记UML,而是知道什么模式可以解决什么样的问题,在做项目时碰到问题可以想到用哪个模式可以解决,UML忘了可以查,思想 ...

  4. odoo开发笔记 -- 用户配置界面如何增加模块访问权限

    在odoo设置界面,点击用户,进入用户配置界面,会看到: 访问权 | 个人资料菜单 在访问权 page菜单界面,可以看到系统预制的一些模块都会显示在这里, 那么,我们自己开发的模块如何显示在这块呢,从 ...

  5. 剑指offer十五之反转链表

    一.题目 输入一个链表,反转链表后,输出链表的所有元素. 二.思路 详细分析见代码注释 三.代码 public class Solution {     public ListNode Reverse ...

  6. Strom的trident小例子

    上代码: public class TridentFunc { /** * 类似于普通的bolt */ public static class MyFunction extends BaseFunct ...

  7. (转)关于python3中staticmethod(静态方法)classmethod(类方法)实例方法的联系和区别

    原文:http://dmcoders.com/2017/08/30/pythonclass/ https://zhuanlan.zhihu.com/p/28010894------正确理解Python ...

  8. Python:使用异常处理来判断运行的平台

    try: import termios, TERMIOS 1 except ImportError: try: import msvcrt 2 except ImportError: try: fro ...

  9. Apple Pay 支付集成

    Refer:https://open.unionpay.com/ajweb/product/detail?id=80 交易步骤: 1.浏览并选购商品:用户通过手机客户端与商户系统交互浏览选购商品,客户 ...

  10. Collection articles on stackoverflow

    What does “WHERE 1” mean in SQL? http://stackoverflow.com/questions/3720735/what-does-where-1-mean-i ...