http://codeforces.com/problemset/problem/338/D

题意:

有一张n*m的表格,其中第i行第j列的数为gcd(i,j)

给出k个数

问在这张表格中是否 有某一行中连续的某一部分 就是 这k个数

题意转化:

是否存在 一对i,j

满足gcd(i,j)=a1,gcd(i,j+1)=a2,…… gcd(i,j+k-1)=ak

直观上感觉:

i要满足的必要条件是 i |  lcm(a1,a2……ak)

j要满足的必要条件是

j= a1*k1,j+1=a2*k2……,j+k-1=ak*k_k

相当于

j ≡ 0 mod a1

j ≡ -1 mod a2

……

j≡ -(k-1) mod ak

利用扩展中国剩余定理可以求出 满足条件的最小的j

我们令i=lcm(a1,a2……ak)

去检验 是否满足 gcd(i,j+m-1)= a_m  m∈[1,k]

若满足条件输出YES,否则输出NO

为什么用满足必要条件的最小的i和j检验?

证明 i= lcm(a1,a2……ak)是唯一满足要求的i:

若还存在一个 i*x  满足条件,那么

将 i , i*x,j 质因数分解,存在一个 p^k 能整除i*x、j,不能整除i

∵ i= lcm(a1,a2……ak)

∴i的质因数分解的任意一项 必须能整除 a中的某一个

而 p^k 不能整除a 中的任意一个,否则i的质因数分解包含 p^k

证明 满足 j ≡ -(h-1) mod a[h] 的最小的j一定满足要求

若存在一个j*x 满足条件,而j不满足条件

即 存在一个h,满足 gcd(i,j+h-1)< a[h],gcd(i,j*x+h-1)= a[h]

将 j,j*x ,a[h]质因数分解,j*x 中 存在一个p^k2,满足

j 中 为 p^k1,a[h] 中为 p^k2 , 且 k1<k2

∵  j ≡ -(h-1) mod a[h]

即 j= a[h]*s - h+1

∴ j+h-1 = a[h]*s,所以k1>=k2

所以 最小的j一定满足要求

#include<cstdio>
#include<iostream> using namespace std; typedef long long LL; #define N 10001 LL a[N]; LL n1,a1; LL lcm; template<typename T>
void read(T &x)
{
x=; char c=getchar();
while(!isdigit(c)) c=getchar();
while(isdigit(c)) { x=x*+c-''; c=getchar(); }
} LL gcd(LL a,LL b) { return !b ? a : gcd(b,a%b); } bool judge_lcm(int k,LL n)
{
lcm=;
for(int i=;i<=k;++i)
{
lcm=lcm/gcd(lcm,a[i])*a[i];
if(lcm>n) return false;
}
return true;
} void exgcd(LL a,LL b,LL &x,LL &y)
{
if(!b) { x=; y=; return;}
exgcd(b,a%b,y,x); y-=a/b*x;
} LL mul(LL a,LL b,LL mod)
{
LL res=;
while(b)
{
if(b&) { b--; res+=a; res%=mod; }
a<<=; a%=mod; b>>=;
}
return res;
} LL merge(LL n2,LL a2)
{
LL d=gcd(n1,n2),c=a2-a1;
if(c%d) return -;
LL x,y;
exgcd(n1/d,n2/d,x,y);
LL mod=n2/d;
x=(x%mod+mod)%mod;
LL k=(mul(c/d,x,mod)%mod+mod)%mod;
a1=(a1+n1*k%(mod*n1))%(mod*n1);
n1*=mod;
return a1;
} int main()
{
LL n,m; int k;
read(n); read(m); read(k);
for(int i=;i<=k;++i) read(a[i]);
if(!judge_lcm(k,n))
{
puts("NO");
return ;
}
n1=a[]; a1=;
LL j=a1;
for(int i=;i<=k;++i)
{
j=merge(a[i],a[i]-(i-));
if(j==-) { puts("NO"); return ; }
}
if(!j) j=lcm;
if(j+k->m) { puts("NO"); return ;}
for(int i=;i<=k;++i)
if(gcd(lcm,j+i-)!=a[i]) { puts("NO"); return ; }
puts("YES");
}

Codeforces 338 D. GCD Table的更多相关文章

  1. CF 338 D GCD Table(CRT)

    转载请注明出处,谢谢http://blog.csdn.net/ACM_cxlove?viewmode=contents    by---cxlove 给定一个序列,a[1 ..k],问是否存在(i , ...

  2. Codeforces 583 DIV2 GCD Table 贪心

    原题链接:http://codeforces.com/problemset/problem/583/C 题意: 大概就是给你个gcd表,让你还原整个序列. 题解: 由$GCD(a,a)=a$,我们知道 ...

  3. 【Codeforces 582A】 GCD Table

    [题目链接] 点击打开链接 [算法] G中最大的数一定也是a中最大的数.          G中次大的数一定也是a中次大的数. 第三.第四可能是由最大和次大的gcd产生的 那么就不难想到下面的算法: ...

  4. 【Codeforces 582A】GCD Table

    [链接] 我是链接,点我呀:) [题意] 给你一个数组A[]经过a[i][j] = gcd(A[i],A[j])的规则生成的二维数组 让你求出原数组A [题解] 我们假设原数组是A 然后让A数组满足A ...

  5. Codeforces Round #323 (Div. 2) C. GCD Table 暴力

    C. GCD Table Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contest/583/problem/C ...

  6. Codeforces Round #323 (Div. 2) C. GCD Table map

    题目链接:http://codeforces.com/contest/583/problem/C C. GCD Table time limit per test 2 seconds memory l ...

  7. Codeforces Round #323 (Div. 2) C.GCD Table

    C. GCD Table The GCD table G of size n × n for an array of positive integers a of length n is define ...

  8. Codeforces Round #323 (Div. 1) A. GCD Table

    A. GCD Table time limit per test 2 seconds memory limit per test 256 megabytes input standard input ...

  9. SPOJ PGCD 4491. Primes in GCD Table && BZOJ 2820 YY的GCD (莫比乌斯反演)

    4491. Primes in GCD Table Problem code: PGCD Johnny has created a table which encodes the results of ...

随机推荐

  1. python list的一个面试题

    面试题''' 一个list,里面的数字偶数在左边,奇数在右边,不借助其他列表 ''' def userlist(add_list): if type(add_list)==list: if len(a ...

  2. docker之Dokcerfile 常用指令

    一.Docker语法 Docker语法: FROM 基础镜像base image RUN 执行命令 ADD 添加文件 COPY 拷贝文件 CMD 执行命令 EXPOSE 执行命令 WORKDIR 指定 ...

  3. [转]申瓯 JSY2000-06 程控电话交换机呼叫转移设置

    说明:若申瓯程控电话交换机分机有事不在位置上或遇忙分机正忙时为使某些重要来话不丢失,可设置将呼入本机的电话转移至其他分机及公网固定电话或手机.电话交换机使用了本功能不管分机用户在什么地方都能接听到办公 ...

  4. CMake与MSVC工程化实践

    CMake与MSVC工程化实践 CMake基础 cmake无疑是最流行的c++跨平台构建工具之一,关于cmake入门指南这里不再赘述,官方文档是最好的参考,这里通过一个例子简述构建一个工程常用的函数和 ...

  5. 自动化部署-Jenkins+SVN+MSBuild 一些补充

    1.ftp的使用 系统管理->插件管理 安装插件Publish Over FTP 系统管理->系统设置 配置ftp参数 如下图 进入任务配置,添加构建后操作 在使用过程中还遇到一个本地防火 ...

  6. 当activity改变时,我们如何处理它

    用户和系统触发­的事件,可能造成一个activity状体的改变.这个文档描述了一些常见的情况,和如何去处理这些改变. 原网站:https://developer.android.google.cn/g ...

  7. 利用BFS实现最短路

    首先,我们要知道BFS的思想,BFS全称是Breadth-First-Search. 二叉树的BFS:通过BFS访问,它们的访问顺序是它们到根节点距离从小到大的排序. 图的BFS:同样的,离起点越近, ...

  8. Nuxeo 认证绕过和RCE漏洞分析(CVE-2018-16341)

    简介 Nuxeo Platform是一款跨平台开源的企业级内容管理系统(CMS).nuxeo-jsf-ui组件处理facelet模板不当,当访问的facelet模板不存在时,相关的文件名会输出到错误页 ...

  9. 了不起的Node.js--之二

    安装模块 使用NPM包管理器可以让你轻松对模块进行管理,它会下载指定的包.解决包的依赖.进行测试脚本及安装命令行脚本. 安装二进制工具包 有的项目分发的是Node编写的命令行工具.这个时候,安装时要增 ...

  10. “Linux内核分析”实验三报告

    构造一个简单的Linux系统 张文俊+原创作品转载请注明出处+<Linux内核分析>MOOC课程http://mooc.study.163.com/course/USTC-10000290 ...